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,INTRODUCTORY REMARKS

'In his memoir Helmholtz (reference 1) showed the
possibility of mathematical analysis of those types: of
flow of incompressible liquids that are characterized
by the formation of so—~called rays (Strahle) or jets
within the region at rest, Following the work of
Helmholtz a rather large number of investigations,
devoted to the same problem, appeared in foreign and
Russian scientific literature, At presént the fully
worked out Joukowsky method (reference 2) permits the

-solution of any.problem on steady, irrotational flow

of an ideal liquid under the following conditions:
first, the fluid throughout moves parallel to a certain
plane, the flow being bounded by plane walls perpendic—
ular to this plane, and secondly, the motion takes place
in the absence of external forces, (The same conditions
are imposed in almost all problems of this type,)

The analogous problem for an ideal gas has hardly
been touched upon, The author. is familiar with only one
paper which deals with gas Jgts, namely, the one by P,
Molenbroek (reference 3), Molenbroek set up the differ—

"ential equations on which the problem of gas jet fléw

depends and gaveé certain particular integrals of these
equations; these equations, ‘however, hardly correspond
even to the theoretically conoeive& motion of the gas

In the present paper a method is presented with the
aid of which it is possible, in many cases, %o find the .

LS

_solution of a given probbem“o@‘ﬁhe fl6w of an ideal gas,

*Scientific Memoirs, Moscow University, 1902,
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Here it is necessary to impose all the conditions which
are assumed 1n the analogous problems on an incompres31b1e
~liquid.as previously mehtioned by Joukowsky. (reference 2).
But, in addition, the applicabdility of the analysis here
developed is further restricted by the special requirement
that the velocity of-the gas partlicles must nowhere ex—
ceed the velocity of sound for the partlcular physical
state of the gas at a given point (local velecity of
sound), Corresponding restrictions are likewise imposed
on the limits within which the pressure may vary, If
this additiopal condition is not satisfied, stable ‘motion,
apparently is not possible, It is assumed, however, that
with the ald of a certain hypothesis stated in this
paper, the problem can be analyzed also for the case

where the additional condition is not satisfied, The
mathematical treatment of this problem, however, is left
to another paper, -

A brief summary of the contents of this paper is
presented herve,

In part I the differential equations of the probdlem
of a gas flow in two dimensiohs i®m derived and the partic-—
ular integrals by which the problem on Jjets is solved are
given, TUse is made of the same independent variadbles as
Molenbroek used, but it .is found to be more suitable to
consider other functions The stream function and veloc-
ity potential corresponding to the problem are given in
the form of series,

The investigaéion of the cohvergence of these series
in connection with certain properties of the functions
entering them forms the subject of part II, '

In part III the problem of the outflow of a gas from
an infinite vessel with plane walls is solved,. '

In part IV the impact of a gas Jjet on a plate is
‘considered and the limiting case where the Jjet expands

to infinity changing into a gas flow is taken up in more v

detail, This,also solved the equivalent problem of the
re51stance of a gaseous medium to the motion of a ple;e'

Pinally,” in part V an approximate methpd is pre-—
sented that permits =a simpler solution of the problem of
Jet flows in the case where the velocities of the. gas
(velocities of the particles in the gas) are not very
large,

o



NACA TM No., 1063 ' 3

A number of supplementary notes are appended at the
end of this report, the second of whlch establishes. a
relation between: the analysis of part V with certain

‘problems in the theory of minimal surfaces,

A further interesting remark may be noted here:
The results obtained in parts III and IV, at least
qualitatively, agree sufficiently well w1th test results
although the experimental investigation of the- phenomena
accompanying the jet formation was conducted under con—

ditions very different from those assumed in these theo—

retical investigations,

The principles of the method with its application
to flows presented here were briefly communicated to
the Moscow Mathematical Society at the beginning of 1896,
A more detailed presentation was made at the eleventh
session of the experimental scientists and doctors in
1901,

In concluding these introductory remarks deep
appreciation is expressed to E, A, Bolotov for his kind
help in proofreading the manuscript, :
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PART 1

‘GENERAL PRINCIPLES OF THE METHOD OF INVESTIGATION

An 1nfinite mass of 3 gerfect gas cunta1ned between
two parallel planes 1is assumed - and, in addition, bounded
by certalin cylindrical surfaces perpendicular to these
planes, . One of the latter is assumed as the coordinate
plane XY, Let the gas be in stabilized motion and let
the direction of the veloeity throughout be parallel to
XY, The effect of external forces will be neglected and
1t will be assumed that the velocities have a potential,
Since it is desirable to aveid vorticity formation,it
is necessary to consider the pressure as a function of
the density, It is convenient to take

P = kp (1)

and thus assume an adiabatic process.

The magnitude Y equal, for atmospheric air, to
1,4025 (reference 4) is the ratio of the specific heats.
It is preferred to consider the motion as constant heat
process in view of the small heat conductivity and radia—
tion of the gas particles, Because of this the adiabatic
process at large velocities appears most closely approach—
ing the true conditions, In any case, the result of this
analysis must be considered as a first approximation for
the reason that no account is taken of the connecting
chains between the particles and the resulting viscosity
forces, frict1on at the walls, and so forth, factors
whioch, in ‘the case of gas- flows are poss1blv of greater
effect than in the case of liquid flows,

Under the foregoing assumptions the velocity potential

¢ 1s a function of x and y and, for the components of
the velocity u, v, the expressionsg ‘

.,axp 5y

With the density of the gas denoted by p “the con—
dition of continuity is written : .
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opu dpv o
St (3)

e aa

The Bernoulli law in this problem may, with the aid
of equation (1), be reduced to the relation

o 7 .,’,-):‘A; L".‘f\{g \ .
Ve B§> ’
P = Po (1 i ' (4)
where
_ Y1 : 1
kvYp '
Ve o= u2+v29 a =~TY'_9:']'_~‘"’ B = —.Y':'ia Po=€onstant (4') /

fhe density at the point of the gas is evidently ol
where V = 0, °

For briefness,

so that

B
P = poll~T) (5)

Equation (3) indicates the existence of a function
V determined by the equations

: v
L. e, (6)
Po oy Po ox

. R

From equations (2) and (6) with the aid of equation
(58) a relation is obtained between the functions ¢ and
VY given by the formulas

, i
;;II (R ERR] 1 (] | 1 e m 1 11— | 1 g [ ]] 1 1 I | |||||||||||-|I|-.||
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The function V represents the stream function,

line, By assigning successive constant values C1 and

.03 to the latter, it is readily shown that (G, - C_)po
expresses the mass of gas per second flowing through a
cross section of the jet between the streamlines,

'\lf:c;_’ \'J:Ge

Equations (7) ar¢ transformed by taking ¢, V¥, for
the independent variables and considering X, ¥ as-
functions of ¢ and VY, fThe relations

p XL o
% oy o ox

: X _% LW %
‘ oV oy’ oV ox

From the faregoing equations the reciprocal of the sguare
of the velocity is obtained:

2 2 -l
R S <._635 , +.\<_§z S &
vENe/ e |

Equations (7) become

-

7' )

the equation V = Eonstant being the equation of a stream—"
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dy dy
)p ’0(1 )‘50, =e—ae
% ®

-~ It is necessary to conslder the dorlvativéu with
respect to ¢ and ¥ of the variables T = V?/2a and

0y dy or
§ &:mn#g%%::anuga%—--aunggi GY,
o % %

the inclination of the velocity to the X = a;il is evi-
dently o, Differentiation of v® with respect to

results in W
' ‘ %) oz d*z dy d’y
_—_V‘
o (dq» 3204 T3 ‘“1:)
or, on the basis of equation (8) -
: )
(V?) [0y 9% or d%y )
=2V = —1)?:
K2 (o6 o05 = zop) =
Differentiation of @ with respect to ¢ glves
oz oy 0% Iz dty

S AR E)

i) dy 0w

=T )

These relations lead to the equation

gV
=g, ©

P

or

Further

il )

o~ =
. ¥
whence, with the aid of equatton (8), there 1s obtained

.o_o= sfdy Oy oz o
F=Ta g «W"‘«» r)



NACA TM No. 1063 8

) —28-1 BZ
= 2373 [1-(25+1)T](1-T) 3%

By making the final reduction in the formula for 28 and

. k3

in relation (9) gives the

g
:
-
3

substituting T for V
relationss

~B
= = 27(1-7) %S’

(10)
DT (l-T) 3

— T o 2T ————

3o 1-(2p+1)T V¥

 Pagsing next to the lndependent variables T, 8 and
taking o and V¥ ay functions of the former gives the

formulas required:

2 . 27(1-7y" P %g'

08
(11)
—a,ie = E:iggi}.}.l ]__.-r)-—-B EEJ. |
3T 27(1-1) 3

Y0 SRR - PN - o
'éo? {27(’1"7) "?} (2B Ty )7 Pasy =0 7(12)

27(1-7) FYE

Egquations (11) and (12) constitute a solution of the

—— ——

problem of ?he flow of a’' gas if the range of variables T
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] correspondlng'to the flow is known, if the values of

W on "the boundary streamlines are glven if everywhere ?
within the plane T, 6 the function VY, together with (
|
{

?
its first derivatives, is finite, single-valued, and con-—

tinuous and the magnltude T does nob exceed 1/(28+1)

and becomes zero only at certain points of the contour, s
The ¥, 8 Tregion will be considered singly connected

and closed,

In order to show that the function VY is fully
defined for the given conditions it will be proved that.
the contrary is not true, TLet it be assumed that there.
exist two functions WV, and VY satisfying all these
conditions, It will be shown that V,—-Vz = 0, The.
functlon W = V¥, -V, everywhere in the given region of
values T, 6 is flnlte and continuous, satisfies equa—
tion (12), and at the boundary of the reglon assumes the - .
valuerzero, MNultiply the left side of eguation (12) by '
Va7de and integrate within the limits of the T, 8 re-— i
gion, 1If the result of the integration is denoted by I, i
substltuting Yy for Y there is readily obtained:

—B ng\ 1—(2841)7 awsz ‘
o [T o G R G
f
. 1
[
- B M, 1-(2B+1)7 ‘ Mz 3 i
+Jf .{21(1—7) W37ﬁ7d94'21(1_15511 v, = dﬁl} =0 t
A ‘ ‘ E

R

where the double integral extends over the entire T, 8
region, once over its contour, Since on the contour

V; = 0 the equation I = 0 can be true only if the
double integral becomes zero, Under the above-~indicated
-conditions, however, the function under the integral sign
may be either pos1t1ve or zero, It is clear that the zero |
value must be taken, and this leads to thé equations

E&E = 0, E&E = 0 and VY, = constant = 0 ' ?‘
oT : 06

as was required to be proved,

T
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Among the required conditions for the existence of
a definite solution it has been mentioned that throughout
the region of gas flow the inequality:

1
T < =
2B+ 1

must be satisfied, The significance of this requirement
will be explained, Turning to formulas (4) and (4') for

2

r=Y_s_1 . 0,17 (13)
2a . 2B+1 -
gives
vé < _2a, g2 g 2R¥PYTH
= 28+1 1+
where
orvar Tt ‘ ¥o1 2 Y—1
ve=2itPo o P epg (T, =2
1+Y 2B+1 - 1+Y .
whence
Vzagkva_l
or, making use of relation (1) gives
7% = B » (131)

)

)

Thus the restriction imposed on T 1is equivalent
to the requirement that the velocity of the gas nowheré
exceed the velocity of propagation of sound for-the
particular physical conditisns at the point under con—-
sideration, . It is supposed that such velocities, at
least for established flows, cannot sven exist, {See also
reference 5, and the authors cited by him.)

The limiting value T = 1/(2B+1) egtablishes also.
the limits within which the Ppressure may vary in the region

ettt
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occupied.by the moving gas mass, Thus, if the variable
T 1is everywhere less than its limiting value, then

o> o ('.. 1 ‘)B ' o > g <'- N jyﬁv
= o P SV 2p+1

But BY = ¥/(Y=1) = 1+ 83 hence

5+1 7/2 _
= 0,63, 22 ~ 1,89
a+l e 2

if it is assumed .that ¥ equals approximately 1,40,

The author turns to the derivation of other very
important theorems with regard to the motion under -con—
glderation to show, in the first place, that the velocity
potential o, considered as a function of the coordinates,
can novhere, within the flow region have either 2 maximunm

. or & gigiggg, To prove this it might be possible to con-

sider only the following conditlon JIf a point eXisted at
which ¢ had a maximum, there would ‘then have to exist
about 1t 2 closed curve on which ¢ had a constant value
less than the maXimum, In such’'case the gas would flow
through this curve from outside to inside the area bounded
by it, The mass, bounded by the curve would inorease with
time and the motion could not bé_ steady, By -similar con-
sideratioh the assumption of & minimum of ¢ is likewise
shown to be impossible, 3But since the theorem on the func-
tion e holds also for the function V¥, and in view of
the fact that it is true also for the coordlnates 2 X,

regarded as functions of the independent variables o
and VY, another proof applicable to all these functions

also will bve given,

From formulas (7)),

ox -7 ¥ ¥y oy

At a certain. point A of the flow region let ¢ have
a maximum (or minimum), About this point take a closed

curve (C) along which ¢ maintains a constant value k, less

'

— (1=T) =%+ 2 (1-71) 23 - . o

g wrme s

- vy~ e Y

U SRIRPUVIPL USSP VR
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than the maximum (or greater than the minimum), Multiply
the above equation in ¢ by F(p)dxdy and integrate
over the region bounded by the curve (C), Integration
by parts ylelds ,

ya B! xa' D!
F(kj Jf'/ (1-T¥B %g'dyﬁ-F(k) JF / (L—?)BQEQ d;:
\ yl 3 . . xl D oy ' '

. : B o %2 2< e
. ’ - : ése*\ _éga { =
ff Ff(Fp) (1-1) i(bx) + (By j' dxdy. 0 (‘a.)
B B' .

where the symbol B/ indicates that the function under

’ : : ‘ B
the integral is- the difference of the values (1-7) g

. . ox
at the points B! and B (fig, 1) and similarly for
D

/- + Since, in the case of a maximum, ¢ increases
D

in passing invard. from the contour  (C) -at points B,
B! the result is %9 dx > 0 in.passing within the
. X

region of integration, 3But slince, at the firsft of these

points dx > 0 and at the second < 0 for the motion
along BB!, then

\

.

. ' . \ N i N :
' (?9\ > 0, % < 0 and // o < 0
c>x./:B : ox 31 - -

and similaily
=y .
2 <0
/ %

D

The function F(yp) is chosen so that F(ep) and Fi(p)
are, everywhere within (C), greater than zero, Turning
noyw to the above~derived.relation {(a) it can be seen that
all its terms are less than zero and therefore impossible,

e e e e

e e P B = T B G T, % 9 e
o, - . .
. B LN o , .-
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hence .also the assumption of a maximum ¢, (If the author
assumed a minimum, the signs in the substitutions would
have been reversed, and the function F chosen so that
everywhere Flo) and P1(p) < 0, and again would have
arrived at the impossidbility uf (a),

The same consideration proves the correctness of %the
derived theorem also for the other above~mentioned con-
ditions, formulas (8) being required for functions
x(p, V) and ylo¥), :

With the aid of equation (10) it is not difficult
_to prove a similar theorem also for the function T .and
therefore the velocity of the flow likewise cannot have

a maximum in the range of variables ¢, V3 2 minimum may
exist but the minimum velue of 1 is zero, In order to
prove thig the following equatlon is constructea on the
basig of formulas (10)

g
d 1- —B-1 T -
T . o oY T v '

Assume that there exists in the ¢, ¥V oplane a point
where T has 2 maXimum or minimum, Take, about this
point, a ecurve (C) with constant value of T; multiply
the equation for T by a certain function f£{(T) and
integrate the left part over the area bounded dy the curve
(¢)., Integrating bYy: parts yields the relationt-

%

1-(25+1)T —-B1 dT (1*7)
/ ..-...-............_....( -T) f.( ‘r).é;; v+ f/ f( T)-?\de

ey 5 (e

In guite the same manner, as in the above-consi&ered
cases, the impossibility of this relation will be proved,
It is readily seen, however; that the proof will be valid

=
e+ 1
flow, and this condition has already been assumed and its

-y et de

WA =

only for the condition: T within the region of

et g e i g v g 0
. RN -

v e e . -
. ' .




NACA TM No, 1088 14 .

physical meaning explained, The case T = 0 1is itself
excluded from.the range of applicability of the above

" considerations and for the following reasont At the

point T = 0, if this point-lies within the flow mass, the
streamlines meet, It is readily seen that in this case

the coordinates x, y canncdt be single~valued functions

of ¢, V3 the latter region will be represented, at 'least,
by a two—sheet Riemann surface not assumed in settlng up

the double integrals that figure in these considerations, -

It is easy to show, however, without any formulas, that
the value T = O 1is the minimum T, For this, it is
sufficient to remember that T = (u2 + v2)/20, and,
since this function is everywhere positive, the value
zero is actually its minimum, In what follows, only
such gas flows for which the eritical péint T = 0. lies
on the bounding contour of the T, 68 region and the
surface of the 1,V region, a single sheet surface will.
be considered, . : )

By setting up formulas (10) the differential equation:

. 3 -8 28 3 (1 3P e
Loyt R, B0k,
Op % oV 1 (2p+1)T oV

end applying the 'above~described device it is found that
the funchtion 6(w,¥) cannot have either a maximum or a
glgimymn i the same way the absence .of tusring values
also for the funstions ¢, VU, of T and g, if the
latter ars taken as the independent variadles is estab-
lished, Fox %his purpose formulas (11) must be used,

FProm the foregoing theorems proved 1t is clear that
in the o, ¥ reglrn there cannot exist ciosed curves along
which the fuactions x, y, T, 6 maintain cons%ent values;
all such curves must end at the boundary of tne region,
Similiar cvonsiderasions hold for the ¥, § region and

4
the curves ¢ = constant and Y = constant,

"In application only such problems as correspond to-
a T, 8 rvecgloa bounded by concentric circles and the
straight line sezments passing through their ceanters will
be kept in mind, The magnidutes 71, 6 will be taken as
the polar codriinates of the points of their regicn and
the common cexntzr of the boundary curves wiil be the pole
of the coordinates,. . '

L T i e A AT 1o
A AP R
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For these conditions from the theorem on the im—
possibility of a maximum or minimum of T(op,¥) 6(e,V)
it may be coné¢luded that inner points of the 7T, @
region correspond to inner points of the o, Vv region,
It may be noted further that by making use of the ab-
sence of a maxXimum or a minimum of the function ¥ (T,
there can again berobtained the theorem already proved
on the uniqueness of the fuuction if it is continuous
within the "T, 8§ region and is £€iven on its boundaries,
The series of its boundary values may, in general, also
be discontinuous, '

-

8)s

A prodblem on the flow of & gas will now be ccnsidered,
Assume as known the corresponding contour of the region
of the variables -T, 8 satisfying the condition T <
l/(ZB + 1); flnally ¥ or the contour is known, If it
is possible, from cgrtain.considerations, to conclide
that the given problem has a solution and if a continuous
function VY satisfying the given conditions is found,
then this function will actuvally represent the stream
- function, since no other is possible, -~ because of the
theorem on the uniqueness of the solution of the differ-
"ential equations of the same type as the equatlons for
the function VY, (See also reference 6.)

Side considerations; as to the existence of a solution,
are not, however, always a2 priori possidle, Zad such being.
the case, having obtained a function V and through it ¢,
it may be questloned as to whether these particular funcs~
tions give'a possible solution of the problem, In order
to remove such doudbt it is necessary to show each time
that the formulas for ¢ and ¥ determine T and § as
single-value functions of x and y,

In order to clarify this point, the reasoning will
be as follows. ZLet a single-valued function W(T, 8) be
defined; then from the formula :

ox ; % b@
B@ bT

Bx BW
bw bT

oné similarly on the basis of relation (8) and formulas

o7

0X _ cos 8 oy _ sin @
% W2at 2 A 2aT

\ e ¢ i = ey o T, ity T A oAy eeme e

s
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there is obtained
. ) W
N 2dT %~ %% ¢os 8 = %? sin 8 (LwT)

and similar ones. *

Thus the derivatives of x(T’ 8) and y(r,8) are
determined as dingle-valued functlons of T and @,
1f the Jacobian (xz, ¥)/(T, 8) is not zero within the
region of T, 8, these as is known, are defined as
single—valued functions of =x,y., But.

' T, 8, \ {W T,8

and from equations (8) and (11) the relations

% T
(P,\U) . T :

8 r 2
- (?1Y> = 2r(1e1)"P (;Y\ L LfRee)T B (;ﬂ
T,/ a1/ 27 . \08

from whiech 1t-1is clear that, if everywhere T 2 1/(23+1),
the equation (x,y)/(T,8) = is possible only if .both
partial derivatives of the function V are simultaneously
zero, This can happen at a singular point of one of the
curves -V = constant if such singular point on the curve
exists, In general, to deny the existence of such points
is impossidble, dut it can be stated that curves YT, 8) =
constant will in no case form a loop, since,closed curves
¥ = constant would then exist within the loop, Hence, the
branches of our curve, after forming the singular point,
will support themselves against the boundary of the regioa
somewhat as shown in figure 2, If, however, 1% is known,
~at least from the conditions of the problem, that all the
curves WY = constant issye from the same point of the
contour’ T, 6 and again meet at another point of the
boundary, then the above~mentioned disposition of the
curve 1ls impossible and therefore the vanishing of the
(z,y)/(7, e) is likewise impossible, The same is also
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true in the case where, starting from the same point of

the boundary of the region, the curves (T, 6) = constant
then divide into penclls each of them again converging at
one point, ' ‘

An entirely different plcture will result if a steady
gas flow under conditions so that T exceeds the limit—
.ing value 1/(28+ 1) 4is sought, The Jacobian (o, V)/
(7, 8) -in the region of T, 8 where T 4is greater than
the limiting value will then be the difference between
two positive gquantities and will begome zero along a cer—
tain curve, Consider, for example, the case where to
the boundaries of the ¢,V region there corresponds in
the T, 8 region the semicircle ACB and its diameter AB,
the center of the semicircle being at T 0; 1let
along this contour have gome constant value,

Along 04 evidently (3¥/7, @) = 0¢ on the semi~ .
cirele ACB (3V/38) = O, Therefore, in passing along
any curve from a point M on the diameter to a point XN

on the semicirclé, the ratio /aﬁf) ( ~ passes through

all possible values from O to ®; hence it follows that
if some value Ty = 1/(2B+ 1) is chosen for T, then on
each of the curves Jjoining M and ¥ a point will be
found at which the expression

/N 1»(éB+ )T aw
2T, b'r/ . 270. n(l-r) be

becomes zero, The series of these points in the 7,8
region will be on a certain curve,. The point where the
latter meets the curve T.= T, will be the point at
which there holds the equation |

, . ) .
(1...7)B <¥££> = 27 A +,£:£§Efilﬂ (1-T) <§Y =
7,8/ 2t/ T er \be

and therefore by ‘the preceding formulas also the eguation

G-

L T T

,.Nw.

e = e e g« s F——
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Evidently from the manner in which one of these
points .is obtained it must be coneluded that they form
a certain dense gurve, Thus T(x,y) and oa(x,y) will
not be single-~valued as is requlred in a8 real motion of
the gas, Thus, if from the conditions of the problem,
it is possible to conclude that the pressure of the gas
flow and the velocity of its particles exceed the 14imit
defined by the inequality T < 1/(2B+ 1), then steady
motion is at least, not alwvays possible,

The suthor retdrns to the solubion of the problem

which was especially.thought of in setting up this analysis,

The flow of a gas bounded by plane walls at which the gas
separates and continues to flow in a region-of constant
pressure is considered, £ The problems of the flow of a gas

out .0f a very largé vessel and the pressure of an infinite

gas ‘filow at a plate will be studiad in greater detazl

Consider a particular solution of equation (12) of
the form

Y, = zpsinlane + o) o (14)

5 . o«
where =z igs a function only of T To determine this

*

function, the ordinary.differential equation

a oy=B dznl 1-{2B+l)T B o _
dT-{T(l T? df.} TR {1-1) " 2%z, =0 (15)

is used, or, explicitly
2 4%z : dz 2 r ;
72(1~7) ~E~T~ﬂ+-7[1+ (a..:t.)'r]«—--lﬂM ~n? T1~(28+1)Tlzy = 0 (18)
Setting
. : | .
Zp = T yn, if 'n> 0 : (17)

yields, for the determination of y,, the equation

o smrnaen i pnn
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2

: 2 . o
7(1~T) %—;%4' [ 2n+1(p—2n-1)7] -.-E?- + gn(2n+1l)y, =0 (18)

This is a hypergeometrie eéuation., Its integrals
are of the fornm

yn(l) = X(1), | AN =17 gy |

A

where K(T7) denotes the series-
Co + 3T + €77 + .,

If it.is desired t0 have an expression for V¥ that
does not become infinite at the critical point T = 0,
in equation (14), it is necessary to take the integral
of equation (16), which remains finite.for T = 0, It,.

therefore is assumed that, by making use of the notation
of Gauss

v, = ¥lap, by, 2n+ 1, T (19) .
where ay and by are determined from the equations

- '*"bn, = 2n-8, anbz} T e Bn(?n+ 1)

‘The question to be decided is wvhich of the problems
of the above—~indicated type may de solved with the aid of
a function Y expressed by the formula

. V= 4+ Be + BV, (20)

where A,.ﬁ,ABn are certain constants and VY, is deter-
mined by formulas (14), (17), and (19),

First consider the boundary conditions of the
problems,. Since the gas mass 15 to be bounded by stream—

e e Aty o i ¢ o i <t R | VAT KA Yt o T L4 T

e, ¥t e e wwes
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2
r(1-1) S38 4 [2n41s(p-2n1)1] -31’.‘. + pn(2n+l)yp= 0 (18)

This 'is a hypergeometric equation, Its-integrals
are of the form

yn(l) = (1), Yn(a} . R(T)

where X(7) denotes the series
Cop + CyT + T2 + .,

If it is desired -to have an expression for V¥ that
does not become infinite at the ecritical point T = O,
in equation (14), it is necessary to take the integral
of equation (16), which remains finite for T = 0, 1It,

‘therefore is assumed that, by making use of the notation
of Gauss

v, = Flag, by, 2n+ 1, T . (19)
‘where ap and by  are determined from the equations

ay + by = 2n-B, ayb, = — Bn(2n+ 1)

The question to be decided is which of the problems
of the above—indicated type may be solved with the aid of
a function V. expressed by the formula

Y= A+ By + IRV, | " (20)

where A, B, B, are certain constants and V¥, is deter-
mined by formulas (14), (17), and (19),

First. consider the boundary conditions of the
problems, Since ‘the gas mass is to be bounded by stream—

e i A e v

e + ryep i —————— o Ay o
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e g+ i S o % RS e 4

R I S



NACA TM No. 1063 o 30

lines, then along ‘the bounding contour 6f the 7,8
region V¥ must assume certain constant values, If the
" part of the contour under consideration corresponds to
- a plane wall,- the angle § formed by the velocity di-
rection with the x—axis should maintain a constant value
so that this part of the boundary will be a section of
a straight line 'passing through the pole T = 0,7 If the

surface of the jet is considered, therge is along the sur—-
face p = constan}, and therefore, by the Bernoulli theorenm,’

the velocity should likewise have a constant value v_, -

But v2/2a = T,  so that T ‘likewise has a constant value

T .- It is clear that the part of the boundary of the T
8 region correspond1ng to the Jjet will be -formed of an
arc of a circle the center of which serves as the pole,

¥

The problem proposed of the motion of a gas mass is
now compared with the corresponding problem of the flow
of an incompressible liguid for the same boundary condi=-.
tions (the same disposition of the boundary walls, vels.
ocities at 1nfinity, and velocity at the Jjet boundaries).
The latter problem is solved with the aid of the well-
xnovwn Joukowsky methpd, By the .use of this method the’
relation between the complex variables 1g vo/v + i§ =

Yg (To/f + 10 and v = @, + iV, is found where o,

and VY, are the velocity potential and the stream func--
tion corresponding to the problem.‘ It is assumed that

O

w=f <1g Jor ot ie) (21)

is obtained and that'this‘fungtion can be expanded in a
series of the form

, / /e NI .
w =k + B ég + ia>+ Tk, Gr:) e2nid

(4]

Then

v Ty
y = A+ B9 + EBD (—:—r—o'/ sin (2n9+q,n) (22)

man e s wame
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It is asserted that the corresponding problem in the
case of the gas flow is solved by the formula

|

i - , y :
AW = A+ B 4 ZB&'<§;:Y y.n sin(2n6 + apn) (23)
o -0 n,o

where Yn is the hypergeometric'sefies defined by formula
(19),. Yo o its particular value with. T substituted for
1 4

T, and A a certain constant, .

‘The corréctness of this statement: may,.in part, be
proved immediately,. ThHus, . it is readily seen that for
T = T, the right-hand sides of formulas (22) and (23)
agree; ‘hence if for T = Ty ¥, = constant, then like-
wiser ¥ = constant,. If, further, for any value @ = 8,
the function defined dy formula (22) does not depend on
T, +this is true only if.the condition sin(zne +a,)=0

is satisfied for-every n under the summation 51gn, but
then the right side of formula (23) for the same 8§ also
will have a constant value,. Thus t he boundary conditlons
imposed on the function V' are satisfied,

It is now noted here the the series \ formally "

"satisfies equation (12), .since it is the .sum of its par-—
tial integrals,. If now 1t ig shown that for any T < To

the series ngl converges and for T = To tends to the
same 1imit as serdes (22), then the function expressed by
it actuwally will be the required stream function, If,
moreover, it is shown that this series converges absolutely
and uuiformly together with the series obtained by its
term—-by-ternm different:atlon with respect to T and 8

it will be Justifiable to consider the latter series as
expressions for the partial derivatives of the initial
series, . Then for a given V, making use of equations
(71), z8') and (11), ¢, x,.¥,. will be found,. As regards

Py . it is found from formulas (11) which lead to the re—
lation

1-{2B+1)T
27

- 1 .
dop = - B = (1..1')8" aT -

B
*”zz nll‘“ [2s1n(2n9+an)dez*n1(l~7) B
To n, 0

—2n(c03248% ah)d¢zn i:ﬁ%ﬁiélfv(lef)fﬁ“x]
T .

e
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whence by use of equation (15) and the following ones
" equation (24)

. ....B
_ -8 3B [ (1-1)

‘ .... . N . n . . y' ‘, -
- (L—T)KBZBn . In 141 2.8 cos(2n0 + a,) (24)
To) ¥ n -y,

mnay be easily obtaingd.

Tty ' ' .
The functions .1 + < 373 which, in what follows,
n -

will be denoted by x,, play a very important part in

~this problem since through them are expressed the char-
acteristic constants- of the various problems, Certain
properties  of these functions and the methods for their
computation-and likewise the essential propertles of the
functions 1z, and y, of interest here will be déscribed

in the following section, Only by becoming acquainted with

all these properties is the possibility obtained "of demon—
strating the correctness of these statments that remain to
.be proved with regard to the fundamental series for -\,

PO
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PART 11

CERTAIN PROPERTIES OF TEE FUNCTIONS 2zpn, yne AND xy.

PROOF OF GONVERGENCE OF THE SERIES FOR Y AND o,

The function 1z, is that integral of the eguation

d ~® dzp

T.E;T (1-1) =R 2 [T~ (28 + 1)7I(1 - T)“Bfl zy (25)

which does not become infinite for T = 0, This integral

is of the form ‘Zp = Tnyn where n > 0 and yn is the
- hypergeometric funcﬁion

’

vy, =Flag, b, 2n+ 1, 1)
the parameters ap and by being defined by the formulas
an + by =}2n -~ B, apby = ~Bn(2n_+ 1)

It will be shown first of all that zp 4does not

possess any real roots between the vq}ucs'vq .and EEQ:—I
of the variable 1T, Assume the contrary to be the case and

let T = 8 be the least positive roet of the function
Since 1z, becomes zero also for T = 0, then, betwecen
the values' 0 and a, a quantity b should exist which

Zne

serves as the root of the equation’ %E? = 0. Thus the

function under the differentiation sign on the left—hand
side of cquation (25) will have the roots T =0, 7T =D,

and consequently its derivative should possess & root

T=c¢ where O0< ¢<bd<a., Inview of the fact that on
the right~hand side of thig equation the coefficient of

Zn
" ecannot Become zero for T < ~EEL~I, it must be assumed
28 + - .
that zp(c) = 0; and hence the function 2z, must have a’

Yoot T = & < a, By the same reasoning it is concluded

v e B g

e
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that in the range of valuss of the variables from O %o
a an infinite number of roots of 2z, must be included.

But then =z, e¢ould not be expressed by a power series.

From the pr0pbsi§ion Just proved, it follows that 1z,
is an increasing function: "Thus, since 2!, has no roots

L]

1
less than —vm- 2z
28 + 1° n

Since it is positive for very small 7T, the same siga will
be maintained for all values of the variable within the
above-mentioned range. Thus Zn increases for values of

T near zero, and hence will continte 0 increase 4nt11 z’n

must alwayS‘vary in the sane sense,

changes sign. It is noted that =~ .
n - -y'n Znn
z! = 3z —_— o ——mm = ey
n n 7 yn.> T *n

where-it is concluded that, for 0 < T < EEJ' y Lthe func-

tions xn _have no roots and are always greater than O
for within these limits 2z';w> 0.

Turn now t0 the function y,, the holomorphic inte-"
gral of .the equation ’

y', 1 - T) + v n[(Zn + l)(l - T) + BT] -+ Bn(2n + 1)yn =0 .626)

or its equivalent

' an ~  ~B—1i .
i St (1 - 7) vyt + Bn{2n + 1)1 (1 - 1) "y =0 (261}
ar n , : n

From the theorem ‘just proved, it 1is concluded that
Yn does not have any roots between the values of T with-

‘in the range considered, The same, may be proved Qikewise
w1th regard to Lhe successive derivatives of this function,
Pirst of all, from equation (26!) it is concluded that

what has been stalted is true with regard to the function
¥'pe Thus, if there existed a root -of this function the
derivative -

o e g 4 S e oy e

2 e e
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L. 20+ - ~B 4
Al L =-1)" ¥t

would likewise have a root. But this isg impossible because
the second term on the leftwhand side of equation (261) °
_ ecannot become zerq within the range of variation of T,
By differentiating m times equation (26), there is ob-—
. tained

yn(m+2)7(l - 1) + yn(m+1)[(2n~+ m+ 1)l =-7) ~ (m- B)Tj

+ [Bn(2n + 1) ~ m(2n - B) - majyn(m) = 0

or

'é$12n+m+1 1 - T)m—B yn(m+1) + [Bn(2n + 1) . n(2a - B)

~ P RRE (g L g ymeBed y'n(m) = 0

whence, reasoning as before, it is concluded that yn(m+l)

cannot have Xoots within the range of variation of T if
yn(m) does not have roots within-this range, By setting

m=1, 2; 8 s,, the correctness of this statement is
proved, )

Setting T = 0, gives

o e e v o e

o

]

g A g

[P

¥ (0) =1, y1,(0) = ~Bn, y" (0} = —B3 _ [Ba(2n + 1) - 2n +f 1]
. : 2n + 2 .

&

? , - Bn Bn(2n + 1) =~ 2n %‘B -1
1l - e A
R4 'n(O) = .

2n + 2 ’ 2n + 8

Bn(2n + 1) ~ 4n + 2B - 4]

Since B 1is approximately 2,5 and n is a positive
number, the signs of the above quantities alternate, The
same will be trwe for any T satisfying the inequalities

" —r—— ot o . e
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3 ’ TR "
ymxn <0 and the quantities Vps y'n. y"n numerically
decreass, '

. ‘ ) -m -
Consider now the funetien s, = y,(1 = 7T) . The

differential equation which this equation satisfies can
bYe easily derived from (26) and is of the form

D R U R ke [ TR
, ST~ . ,

' By setting m = fn 1% is seen that for - n > 1 + %

the quantity within the brackets maintains the plug sign
whatever the value of 7%, If n is an integer this is
true for all n 3 2; for n =1 1% will have the minus

sign, It is assumed that =n > 1 + % .

© By settihg m = pBn for a suitable choice of W,
there is in the brackets a negative quantity for all values
of T if the expression is negative or zero for the larg-—

est admissible value of T: namely, ,*Jk__, For this it
is sufficient to choose B so that it satisfies the equa-—
tion .

(1 - p)(en + 1) +.~2L*é- (bBn - B ~ 1) = 0

or, after reduction,

p2n - 2p (2:1 + 34 -L.> +2(2n + 1) =0 (28)
3 2P
*Within the limits, of course, of Q and - 1 -3 -
‘ 2B + 1

thig must be kept in mind throughout the followihg iiscus~
sion,

P e o e oy
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The maximum value of R is obtained for very large
n- (n = »); in this case W = 2., In general p < 2;
thus, for. n = 2, B =:2,5, # = 1.083; for n = 3,
o= 1.18:1.& ’

With the above choice ‘of the quantity m the func-
tion st cannot have a root different from zero within
the range of variation of 1. This car be proved by the
same reasoning already more tkan cnce applied.

It is noted that sn(O) = 1 and from equation (27)
s1,(0) = m - Bn is obtained. For m=pupn, s'y(0) > 0 and
therefore the function )

...p,?n

y 1 = 1) (29)

increases with the variable and will exceed unity. If

m = Qn; however , .Q'nfo) = 0, bdut g (05 = —Bnlsn ~ B -1
. ' .1 2 2n 4+ 2
and this magnitude for n > 1 + = 1is a negative quantity.

For this reason s' (T) likewise, as a decreasing function,
should for T > O, be less than geroj; hence it is concluded
that : : L

y (1= m7PR , (30)
for n >1+ % is a decreasing function and represents a

proper fraction.

For n <1+ % the quantity within the brackets in
sequation {27) will be less than O for m = Bn; st,(0) = O,
s*,(0) >0, and therefore .s'y(T) > 0 and , '

—Bn

yall =T) (291)

will be an increasing function,

The smaller root, denoted simply by M, of equation
(28) will be less thdn 1. It can be readily shown that if

m= ufn and 0 < T < «ﬁ3¥v~, the goefficient of s

28 + 1 o

e
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in equatlon (27) will again be of constant sign, the .
latter being positive. Therefore 4{T) > 0 1is obtained

since s',(0) > O; and hence it is concluded that - the
function '

o™

g1 -y (301)

’

decreases with increasing T. Thus, for example, for.
n=1, p=20.,93 (B 1is taken equal to 2,5), and there-

fore with increasing y,(1 - T)*gy vy, (1~ T)_O’Q36 will
be a decreasing function,

The above~mentioned properties of yp give limiting
functions within which y, 1is included: namely,

for n > 1 +»%; (1 ~ 1’)ﬁ >y, > (1 - T)uﬁn
for an <1+ %, (1 - T)Bn <V, < (1’— T)uBn

where U is determined by equation (28) and is equal to
the smaller of its roots.

It may be noted further that the function

yal = 77"

increases a fortiori. For n <1 + % this is evident;

for n >1 + %,' on the basis'of what has been said above,
it may be considered as the product(of wo increasing func—
tions yn(l - T ~HBn 44 (1 - T)"\*HJ/PR_ Hence if the

greatest value which T assumes in the glven problem 1s

denoted by T, and the corresponding value of 'y, by
% oo this will give the inequality
, ,

or

I T
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¥ : - 28n
T (= | (51)

In,0 1 -7,

: ‘ 1
Last to be considered is the funetion x, = 1 + LA

on which, as has been shown ian the foregoing, depends the
computation cf the very. important constanis of interest in
the various yreoblems., The difierential egquation which the
function =, satisfies is first set up. It is ohtained
from the hypergecmetric equation (26) by setting :

T .
Xn—1
; f-—-}-'-‘“ﬂ aT

Yn = © °

Thus, it is found that

xt (1~ 7T) +7?xn2<1'7 T) + x 87 - afl *‘(25.+_1)T] = 0 (32)

,
[

This equation, together with the condition x,(0)

fully determines the function x,. It has been shown'
already that the funetion xp for a change in the variable

within the limits under consideration remains always
greater than zero, It w1ll be shown that it decreases with
increase in T. For this purpose:requation (32) was differ—
entianted; there was obtained

xho Tl ~ 7)o+ 22l - Ty + (B - 1)THI ~ 7]

évnxnz ~-an ~ n(2B + 1)

its value 1- +?1 Z..._.

X . L. Vn
and nultiplying the equation by T22(1 - T)“Byna, reduces

Substituting in the brackets for Xy

it to the form

o e o e e

i

S 1 v e g i
B

g e

@ enbi, B e, 2 on 5.
i (1 T) p X', 0= [nxn - x 8 - n(28 + 1)J7°7°(1 = 1) Ty
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X _v.. ‘ryf .

But x, 1is Iess than l, since ~ 1= %22 i3 a8 neg-
LY

ative magnitude on the basis of what has been said with

regard to the signs of the functlon ¥yn and its .deriva-—

tives. - Hence, the right-~hand side of the obtained equa-—

tion is a negative quantlty of éomstant sign. If xt

n?
equal to ~B for T = 0, had a root w1th1n the range of
N . a. 2n+1 -B+1 2
variation of .7, then E~7 (1L - 1) Yy x’n would

also become zero for a value of T less than this root,
a rTesult yhich is 1mpossible.‘ But xrn,' everyWnere

finite, as can readily be -shown', cannot change sign except
by passing through a root., -Thus xf, remains less than

zero and therefore x,  decreases.

The next step is to seek to obtain functions that
limit the value of x,. For this purpose the following
theorem will be proved: If, on substituting.in the equa-—
tion determining Xpn, @& holomorphic function ky, there
is obtained on the left side 2 positive-value of constant
sign, “then ky > x5 the 1nequa11ty sign will be reversed

if the result of the substitution is less than zero. For
7= 0, kp may be equal to 1. From the assumed ineguality

K1,T(L = T)  mky?(1 = T) + kpB7T - n[1—7(28 + 1)1] 2 O (53)

Lk

subtract equation (32), which leaves

n'— xTy )7 (1 ~:T) + (ky = xp)[BT + 2(1 ~ 7)(xy # ip)ji'd.(zs’)

. ‘T ~
By setting - T 1
' J/‘~B-~ ndT
IT *
. Ly . ) ’O .
o

T
ky, = 1+ R - % 1, o=
n

n >0

then, on substituting in the brackets for k, and =x,

their values in terms of lp and yn .and multiplying by
the povltlve factor ynZnTzn 1

~B o
(L ~T) , +there is ob—-
tained A cod

v em, P :
& g = 1)1 (L= )T Fala 2 O

o pmn e
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Integrating this inequality within the limits O %o T

‘yields

B 2n «8 >
(kp = xn)r (L ~7T) wyalan< O

whence the required inequality is obtained

kn xn

% will now be shown how the function Xp may be com—

puted to any degree-of accurscy by transforming it into a
continued fraction, In differential equation (32) the new

. - T .
independent Varlable s defined Dy s = oo i sgb5u1-

—

tuted; when T varies from 0 to gg«—ni, s wvaries from

0 %o gg. The differential egquation for xn‘ will Dbecoxne

i

xfn s(1 + g) + x.fs + nxnz - n{l - 2Bs) = O‘ (34)

From equation (34) is found. =x,(0) =1, =x',(0) = -B. If
any function kn satisfies ineguality (83), then on sub-
stituting in (34) there will be obtained

ki, s(1 4 s) + kyBs + nk,” — n(l = 28s) 2 0  (35)
whence Tollows as before the relatlon ky Xy, Zfor
kn(o) = 1,

Equatlon {(34) together with inequality (35) will bYe
written as
=1

a1+ 8)+ xBs + nx,® - n(2 -~ 285)3 0 (36)

which is t0 be understood as follows: If, on substituting
any finite function within the range of variation of s

and equal to 1 for s = 0, the result is zerc on the left-
hand side of relation (36), then this fuanction ie the exach
exprossion for X433 if, as a result of the substitution

a positive quantity is obtained, the subsitituted function

V.._,.._.w.,"-_,..
RN Y

v
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is always greater than =xp; in the contrary case the sign
of the inequality is reversed,

N

— - Bs .
mologTowy o 6T

k4

where c(n) is a2 new function to de determined, On reduc—~
ing and changing sign, there results from (36)

i .8
b c(n) s{l + s) + c(n) (2n + 2 = Bs) - (20 + 1)0(«1.1)2 0B 120 (377)

‘..‘.vﬂ...,..-,.,._..,;._.,_.m_

where it was necessary to reverse the inequality sign.
The meaning 9f the relation is as follows: If, after sub~

stituting in the left—hand side any function in place of

c'®’/, the result is a negative gquantity; then replacing

c(n) in formula (37) by this value'there is obtained an -

upper limit of the function x, - that is, a function
greater than xp. '

Purther is set
i o ] .
(n) - 0 . . (38)

e}
t
{
o
E{

‘where cocn),= c(“}(o) = , and the funection

w
;-
!
|
i

satisfies the relation

()t (n)

1 2
- s{L + s) + 2 b(n)

s{2n + 2)

d [2n + 8+ (B + 1)s] ~

~ (22 + Veofm) =gz 0 . (38Y)

whencgvis obtalned

(») . (n) -.g 28 + 1 .28 + 1 .
8o = A0 = SR T Phae -

Next, setting successively

v s s e p i i
B . . S
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) n)
1,0 1,0
M= I—(':—l-(r)'s 4] M= i"__:ol (A 0, "M== T . »)s
' (89)
e ™ ()"‘ m ;
c2(n)= ‘i“_.e"g;(-ﬁ.r’ {’n ’_"_‘_ 1 = ; ‘”’ vy

yields, for the determination of

@1y 03, €3; da.va,
the relations' :

eL(1-45-+, (20— fis) —(2n-4-8)c, s —
—0,™(2n+-2)+-p--1=2 0.
0, ™'s(14-8)-4-0, ™| 24D 4-(B-H-1)s}—(2n+-4)9, "5
ety (208 —B = 0,
¢,7s(14-5) ¢, (2n4-6-—B5) —(2n 4-b)e,™ s —
_le"'(n)(2n+4)+p'+1 20,
0,7 5(1 4-5) 40,0 2n4-T4-(B4-1) 5] — (21 +-6) 0, %8 —
—c, 205y —B =0,

8

, Horeover ﬁ 2841 26+4 p 2B-+1 23+4
=3 + 25nF3 — Yot =gt 4,07 — S5
o B (2BFL_ 2p41 __B 4 g2f41 2041
oo=5+ 6515~ Va5 Te=3 Tt Yy 5y

With the aid of these formulas it 18 not difficult
to set up equations for the determination of e(n)y
(n) (n) (n) .
0 n» 22d formulas for e m, 0 a/ z,0 The
latter are of the form

241 o 21
o™= g+m(m+1)2n+2m+1 (m+1¥; 2n+2m+2

o “+(m+1>3nff§£§-a ~ 0 gy
or, after reduction.

(mpD)@ntmt-1)
c‘”’m.o=§——(2ﬁ+ DanTomt)enramta)’

y __B (mi-1)@2n4m4-1)
o= — ;) g om0y @n T a1 3)
The equations for determining ¢y &rd ¥y are
the following. )

© e dL+Q+wW’Pn+ﬁm+&'ﬁ@—{m+ﬂm44pwa§—
— M, o(2nt-2m)Hp-120,
o’ s(l—|—s)—¥—-d(”’m[2n+2m+3+(@+1)s]——(2n—}—2m+2)0‘”” §—

—c™, (2n+2m4-1)—B 0. -
All these relations can be readily verified bdy the
method of passing from g to m+ 1,

(40)

33

vt = v




O

=
<

NACA TM Yo, 1083 5 e .. oma

The sign < . in the last of the foregoing relations
holds until the 1ndex .0 ‘gxceeds a certain limiting

valuet nanely, while ¢{8)7 15 positive; if c(n) . <0
£ Q- . T, O

‘then ‘in the relation for ‘%(n) the sign < must’ba re-— -

placed by >, This is because, among the szmnllf;catﬂons
which vere made in transforming the above relatidy, there

occurred division by ¢ n‘m o -

By collecting,tﬁe results, X, is fiﬁéllj‘éxpreSSed
by the formula:

Bs
xnz-.l-- SRR
1 é»c(n)os
. ION :
: w30 (41)
(n) -~
1l -¢ 1,0°
(@) :
1—5 _{_'os,skoo
. / -
where oint) ang a(®) are expressed by formulas

{40). B0 By
(n) Now consider the magnitude of. the quanbities c{n)m 03
a\n m, 0% It is not.difficult to see that they are always

contained between $/2 and -A. The first of these is
obtained for n wvery large (n = o); the sccond,in general

‘differs. little from —1/4 and is obtained from the minimum

of the expression

o (n) B _ (28 ¥ 1)k{2n + k)

kvie0 " 2 T 2(en v+ 2k - L) (n + k)

as a function of Xk, This minimum occurs either for
k= En/f4n® = 1 + n{2n ~ 1), or k = En/4n® =1 « .. -

+ 0{2n ~ 1) + 1; these values.for integral n are egual
to '

an® . n -1 and 4n3'@ n
{n)

The cocfficients of 321;~% in %he- formula for ¢ k~-1,0
corrosaon&zngly reeeive the values

[

ot in g Ao A 1o Y R g A S %
. B PR -

NSt n A, Moy nrtei
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. 1
1 and

- on° -1 . L 1
mcl 1” NAH.‘ ! Ilv

2 2 - 2
Apm:uxpvnmstuwsv 16n - 1

the sccond of which is larger than the Muumw. Thus %the

mininum value of oAuVWIu.o is
B 2B + 1
. 2
4 {1 ~ ii{t{t‘i
wmu -1

-

Ha can further casily be shown that the oos«wndmm
fraction. (41) is always convergent, The contrary coulid
be tho case only if the expression

QAN»VOM x
1 l..‘ ) ANNVom

1 - nAsM .
mt Al . NCO

N@Muomowmn#wwdw.wﬁa0405wbwﬁmwommawwdowmawmommo,
for n = ®, this quantity becomes .

and its maximum value, obtained for the maximum value s = mw
is H
| 1 1
) 4. 5
1 -

P

e #5 s s ey |
. . -
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As reogards the signs of ¢ and & (for simplicity
o “in writing, the indices are omitted) those for
) which m is equwal to O, 1, 8 ,.; up $0 a certain limiting
O value will be positive, all the remzining ones negative,
o providéd that n has a finite value. The limiting value
f’ of 1l 4+ m is pobtained from the inequality’

§ 2 {2n + 2k = 1)(2n + 2k)

< 0

or, on reducing,:

% + (2n + B)x ~ Bn{2n = 1) > O

This- inequality is satisfied as soonas =+ 1 = k
exceeds the Iarger of the roots of the equation

; o3 4 (2n + 8)0 - Bn(2n — 1) = O

The limiting value of m will therefore be expressed by’
the formula ' K

h = E{-—n*%-r,/;?(zs + 1)‘+ %3}

If only integral values _of n are considered, the

~

B

following limiting m and o)y . will be obtaineds
{ n=1, mn= 0, c(l)'o = -%
! . ’ ’ 1.0 28 s }
j n'= 3, - 3, c(3)s PR ¥ A B assumed equal %o 2,5
: | : 4X7x 13
- RN C b B
| BEA S e e T T R (42)

m inereasing with =n as required.

likewise bgcomes negative, but only for large values of

0 n)m,o

ny For

The quantity b(n)m o

o be less than zero, the inequality

e st o e, e+
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. :

k(2n + k)
=~ -~ (28 + 1 — . <0
2 (26 ) (2n + 2k + 1)(2n + 2k}

must be satisfied, or

/

¥ + (20 - B)k ~ Bn(2n + 1) > O

The limiting value of m denoted by m, 1is expressed
by the fornmulas

Y-
my = E{-— n + % +"/n2(25 +. 1) & -BZ—}

But if p>aq and p=E(p) + 6, q=2(q) + ¢
where © and 9 are proper fractions, then p - g =E(p) ~ F(q)
+ 8 - 433 thus S

E(p ~ q) .= E(p) — E(q), or E(p) ~ B(q) —1

Therefore, comparing the obtained values of m, and
the limiting m, it will be found that m% will be egual
c\n

to the 1imiting m for the coefficient )., Plus-
. 3
E(B), or plus E(B) + 1, Thus
1
B Ly mE 2 o )2.0 - q
A 2 N
n=2, m =4, §( )4‘0 = - g; .
n.= 3 n = 5, E=— I R
5y Wy 5.0 pop
{¢) . 3
n= 4, m, = 7. 0 2,0 =--i-6-0'

~

A11 é(n)m’a starting from that whieh corresponds to

the limiting value of m like all 3(®ly 4 for( nsm
- (n

1 -3

mlnos

are negative quantities and the remainder ,
R CO N
1 ¢ 0O

of the continued ffaction is expressed in the usuwal form

i S St o R T e e e AT £ S iy s
. - - P
. [ - ‘ ‘ R R

oo e e
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14+ a .
1+ b ' ;»its numerical value being contained
L +c . ..
‘between -1 + a and 1-+-a____ .-

1+ b

0f the functions =xp the one that is particularly

. simple is x;, -which for the assumed value of B is ex—

‘pressed as a fraction -of two polynomials of the third
degrees. For n = 1 ,

-

(v _ _ 1 (%) 7 (1) 7 5(¥) 3
c o= T 3 3 o ¥ 35 © 1.0 7 7 350 75 1,0 7 33
(x) - _ 5 32  _ .
c 2.0 s 141 a 2.0 O (by (43)_)
Xy = }l - ....é.i...%..—.
+ s/4

_ L + ss/14
or, after reducing, ‘
32 — 645 — 148° ~ 2¢°

= ' (44)
i (¢ + s)_(sz + 2s + 8)

With this formula ¥y, 1is readily found. For this

purpose the previous variable T = B is substituted
. . 1+ s ‘
which gives . .
vt - 1607 + 2107% - gat® :
%y = 1 eT Il _ 32 1607 21 847 (441)
- ¥ 32 —~ 80T + 7072 - 2173 -

whence, since- y1{0) = 1, there is obtained

82y, = (4 ~ 37)(8 — 147 + 77%)

e e Y

ot

e e s e e S s+ < P
R | B
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The preceding simplification results only from the rounded
values: B = 2.6, ¥ = 1,40, The more accurate valus of -
¥ for air is 1.4025 and P 1is somewhat less than 2.5.

In this case all =x, are expressed by infinite continued
fractions. : e :

To employ in the applications the exact formulas for
X, appears impossible, since this would offer very great
difficultics which bave not been overcome. However, by
using evén the simplest proper fracticne, xp 1is obtained
with sufficient accuracy. ZEntirely satisfactory results
are obtaianed even in the case limited to the third prover
fraction and x, 1s expressed by

xn=1r-BB
1 - c(njos

(n)
1-*3 OS

(45.4)

or, after reduction and substitution of the values of the
coefficients

2
- -1
£y = 1 - Bs - _Bs (2n + 3)(Bn - P ) (45)

(e2n + 2)[2n + 3 ~ (2Bn - B - 2)s]

The error for such computation of xn is greater the

greater the value of s. The magnitude of this error now
is estimated, considering only the integral values of = n.

With the exact value of Xy, for =n =1, a direct

comparison of the results of the computation of this func-—
tion may be carried out by formulas (44) and (45). The

.
2B
assuning as before B = 2.5. The exact value of x; will
be '

computation will be made for maximum s§ = or s = 0.2,

T7e o, 5253893

1477

From formula (45)>is bbtained‘
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x; = 0.525510
" The difference is approximately 0.00012.

For other values of n in estimating the error, it
is necessary to proceed otherwise, It is notecd,firast of
all, that for all n > 2 formula (45!') gives & function
graater than =x,4  the contrary is true for n = 2, in
ordgr to show this, turn to ejuation (38'), determiaing
3(n) mnig equation may be written as follows:

(n)

(0)?

B(n)’ [2n+ 3+ (B +1)e] -2 s{2n + 2)

s{l + 8) + 3
- (an+ 3)3®), =0
. _ . (n) (n)
Substituting in the left-hand side 9 o for , Zives

a‘n7os[a + 1 - (2n + 2)a(n)oj

or, after substituting in the brackets for b(n)o Jits
value by formulas (40)

acn)o,{l —pn 4 (28 % 1)(2n + 1)] - B(n)cs[z - Bla—z) - 2028 + 1)
2n + 3 2n + 3

For n » 2 this value will be less than O, But from this,.
a? has been said, it must be concluded that on replacing
a\e '

) in the formula for x, by a trial value, 2 functlon.
greater x, 1is obtained, On the contrary, for n =2 in
the brackets, the quantity '

2 - gg..’.?i....]:.>0

which shows the correctness of the reversed inequality:
. (x» 1is greater ,4han the value that would be obtained on
o ‘substituting a2 o for Bd® 1in the formula for xp) for
the value n = 2,

As regards xz, the lower limit of the function will
be the following proper fraetion. Thus

o e S
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n+ 2 - %? - '4&n + 2)0.—'éﬁs).f 4s(n + 1)(za + 1) + -15.
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Bs c(’)
1 -~ fs -~ € xp< 1 ~ Ps

830(3)
1= (e®, + 2(®) s - d(ajoc(zjz 20 3
' 1 - cl2) 1,0°

-

By computing the valuese of the 1im1£ing functions for the
case of the greatest difference in their values, when
s = gg = 0,2, there 3is odbtained

0,47034 € x5(0.2) < 0,47037

In t?e case n > 2, assulle in the equation for

B(n) -2, where k 1is a constant to be determined,
1 —~ ks .

and k 1is chosen so that the result of the substitution

is greater than zero for 0 < & < 35 This requirement

leads to the inequality

k(2n + 4 - Bs) - k%s(2n + 3) = (2n + 4)c(®) 2o

The smaller root on the left-—hand side of this in-
equallt; is expressed by

Bk”?

b(n),

{(2n + 3)s

Its maximum value corresponds to s = g; = 0.2 and is -
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If kX is equal to this value, the above inequality will
be satisfied. :

It is now possible to indicate the limits within
which xp is included. The upper limit is expressed by

formula (45'); the lower is obtained by substituting in

this formula ~§£529 fér B(n)o. After reducing, finally
1 —- ks : .
Bs®(fn — B — 1)
1 — Bs — ERA— >Xp > 1 — Bs
. 2Bn - B -~ 2
(2n+2)<1'-—- : s)
: 2n + 3

2 - - 13
- j s®(Bn ~- B ) (47)

{(2n ; 2) (1 - Eﬁnz— B ; 25 —~ﬂs2>
n +

where A = pEé__,, d, = B _ (28 + 1)(2n + 1), and k
2

1 - ks (2n + ' 2)(2n + 3)
is determined by (46).

The numerical values are given for s = 0,2 of the
limiting funcetions for X, for n =3, 4, 5, and 6
0.4348 > x;(o.z) > 0.4343
0.4095 > x,(0.2) > 0,4073
0.3905 > x,(0.2) > 0,3872
0.8755 > x4(0,2) > 0.3704

It is thus seen that the error increases, or more accurately,
may increase with n but nevertheless is very small for

small values of the latter, For somewhat 1arge values of

n he limits of error widen. Thus

n

12, 0.326 » x,,(0.2) > 0.508

n = 24, 0.293 > x,,(0.2) > 0,251
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This unfavorable circumstance is offset, howéver, to sone
extent by the fact that the functions x, with large n

enter the more removed terms of the series and the coeffi—
cicnts of these terms are relatively small.

The limiting functions for x, also will be given

with large n. These functions will be useful in computing
the liumits withia which che romainder term of the seriecs
for the gas jet problem is included. Again, in the differ-
ential equation defining xn - A

xtys(l + s) + xBs + nx°) — n(l ~ 2Bs) = O

Substitvte on the left—~hand éide the exgression

J L < 2Bs * 2us®, and choose the function u so that the

result of the substitution is greater than zero, Then,
by the theorem proved above,

«/1 - Est+ 2us? > Xp

This substitution gives on the left-~hand side of tkhe equa~-

tion for Xy the expression

w's(l + s) + 2ull + (1 + BYs] - 8(1 + 2B) + 2 y/1 - 2Bs + Zus® 2 ()
= s

W i« 285 + 2as®

which, &8 can'be seen, will be greater than zero if

w=p/BO2B)T _ 53/2
. 2n®

2Y¥ n®

Thus, for this value of u, Qfl — 2Bs + 2us® is a decrcas—
ing function of ;5 the product, however, of this roet by

2nu  for the maximum value of the variable s =,§; is

equal to (1 4 2B)B, and therefore the quantity k rTemains

positive. On the other hand, it becomes negative, whatever
the value of g, 1if SR : : .

B(1 + 28)

b N

2n + 2
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Msinccmtheﬂnumgggpprﬁin the expression for k in this case
is equal to zero for s’="0'“and;”ag“a”decreasing“function,

will be less than zero for s > O, Thus

3 : L ‘ ; : 2 )
) LS/ TSI TR

. en n +

By raising somewhat the upper limit of the function
Xn, the first part of the double inequality also can be

transformed into

I
JiTERs + /282 v 28)
n .

n

and thercfore x, can be expressed by the formula

3 2
X, = /1 - 2Ps + st/éB (ln+ 28) (49)

where A is a proper fraction,

It can be easily shown that Xp for the same value

of the variable decreases with increasing n, This isg
clear from the equation for Xn+m®

x'pems (1 + s) + Xn+mBs + (n + m)x2n+m - (n + n)(1 - 2Bs) = O
Substituting on the left Xxp for xp4p, there is obtained
on the basis of the equation for Xp '

2
mlx®, - (1 - 2Bs))
a magnitude greater than zero due to inequality (48), and
therefore it is concluded that '

xn > Xpam - (50)

whatever the positive number m.

" Now with the properties of the function Xp that

are of importance for what follows, two inequalities
which the functions Yo must satisfy will be noted
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- further., The first of these will be derived in the follow-
ing manner: Set up the differential equation determining
‘ .
nn = z_g;
Ya

{nt, + nan)r(l -‘1) + [(an:& 1)(1 - 1) + Brjnn + Bn(2n + 1)

Also gset my = E, - =B, which gives

(£, + 2071 =~ 1) + [(2n + 1)1 - 1) ~ B(4n - 1)7]E,

~ Bnl2n + 1) + -"159.51(25 -8 -1) = 0 (51)

To this equation, as can be easily seen, the theorem
proved for equation (36) for the funetion xy is appli-
cable. If on substituting for §, any holomecrphic
functicn there is obtained on the left—hand side an
expression greater than gero, the substibtuled expression
will be greater than £, If 2Bn is substituted this result
in fact is obtained, and therefore £, < 28n.

Substitute, further, in the equation defining € ntm
in place of En+m the function Ep. The result of the
substitution, on the basis of equation (51), which is

satlsfled by £a, radices to

(28 + 1)1 [2£,(1 = 7) - B(4n + 1) = 2pm] — ~2P * 1)26nT
1 -7 _ _ 1l -7

This expregsion is negative for any T, since it giVGS‘a

result less than zero on. substituting for ¢, the greater

- magnitude 2Bn. Hence £ < fnem, or

Th, Br_ Yius, B0+

b l -7 Yn+¢m l -7

Integrating this inequality from T +to 1T, and passing
from logarithms to numbers, gives -
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: ~2Bn ~2B (n#m) -
l -7 l1 -7
Yn,o v1 = Ty Yn+m,o -1 — Tg

where Yu,o0: by the assumed notation, denotes yn(To>-

FETEo AR Yn,o\1 = Tq

) decreases with in-

s e e e s e

The second inequality which it was proposed to derive
follows from relation (50), From the latter is -obtained

y! y!
n > n+nm
In ¥n+m

Integrating within the limits & and 8o, g&lives the
tesulb on passing from logarithms to numbers:

¥ ¥ :

Yn,o0 Yn+m,o

¥y
Thus, the ratio ——2a increases with increasing n.
¥n,o

It is necessary to proceed to the proof of the con-
Yergence of the series giving the solution of the gas Jet
problems. In explaining the general method of solution’
of this type of problem (see »pt. I), the following for-—
mulas for expressing the stream function and the velocity

potential were arrived at:

T VY
V= B@ +Z;Bn (-,?a) ~~B- sin (2n6 + a,)
. ‘ ° Yn,o '

o ~B.' u. |
- (1 -7) ZBn (-T'-> A-«—XQ-—xn cos (2n8 + ay)
¥n,o 7
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These are formulas (23) and (24) of part I. The indices
n entering them increaseias the terms--of an arithmetie
progression.. It will be shown the preceding series are .
absolutely and uniformly convergent for any T « To if
this is true of the series

n '
¥, = B8 + }:Bn (f:-) sin (2n0 + ap)

o, = B - - EZ ( ) cos (2né + an)

expressing the stream function and velocity potential for
the corrcsponding problem in the case of incompressible.
liquids. The series VY, and ¢; will evidently be
lim 3B,

absolutely convergent if —_—3 < 1, where n and n,

n = o By
are twvo successive values of n, It will be assumed that
this condition is satisficd. On the basis of relation (31)
i1t can then be statad that the terms of the series V¥ are
corrospondingly leses than the terms of the series

Z[B ] { T - \(n | (54)
! Tl - TO)EBJ

which 1s an absolutely convergent series for T < T, if

To < —~3L~—; for in that case
28 + 1 '
ap 2f+~1
Lor(y - T) = [1 =~ (28 + 1)1)(L -~ T) >0

T(1 — T)aﬁ
T,(L = 1)

and therefore is a proper fraction.

The remainder term of the series y

n= o
T n
- o Yn o

n=n’
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.is numerically less than the term R'y, of the series (54).

n= ® B2
= B 1 =1)°
n;[ n] {To'(l - To)zS

’

but BRI, approaches zero with increasing n no matter

in what manner T .is less than To > From this it is
concluded that the series VY is ug;ﬁggglx convergent.

Since the series entering the function ¢ differs
from the one just considered by having cosines instead of
sines and the successive terwms multiplied by a series of
decreasing positive quantities, the theorems just proved
likewise hold for the series ¢, Furthermore, it can be.
easily seen that the same propertiel are possessed by the
derivatives of the functions ¢ and V¥ with respect to

® and therefore also their derivatives with respect to

T, since the latter are connected with the former by the
linear relations (11) of part I, A consequence of these
theorens is the continuity of the functions ¢ and
and their derivatives within the range of the variables
T, 8 under consideration. (See vol I, p. 310 of refer—
ence 7.)

It will be shown, finally, that as T _approaches the
dimiting wvalue = Tq, the series © _and WV . approach limits
ﬂhlch are the values of the series obtalned on substltutlng
To for T. For this purpose, consider the sums o and
g' of p ‘terms after the nth in the series @ and Y.
Let =m,;, nyp ...,np be successive values of n; then denot—
ing the fractions o

1—~'r 2p yn (1-—7 >—2Bn
l-.-'l' ’ yn’o 1—'To

corresoondingly by E and Ny, these sums can be trans—

“formed into- . T T
n
. P :
.—av‘! n ) N
o = = (1 - 1) ZL Bpn £ npxp cos (206 + ap)
. & . .
ot Bnﬁ nn sin (200 + ‘agn)

4-5{
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. The expressians

By t™ cos (208 + an), By t7 sin (308 + ap)

‘will now be demoted by up and u'p.

The series ZXup and 3Fu'!y uniforamly converge for

any E less than unity, since they ccincide with the

series entering the functioas ¢, and .. Iv is assumed
that they converge also for £ = 1; +%then from & known
theorem in analiysis their value for £ = 1 ig the limit
which they approach as £ approaches 1 (and hence T—pT,).
But in this case n can be given an increasingly large
value so that the sunms

Up

1

are included between any values ¢ &and § ag small as is
desired, whether the quantity § 1is less than or equal to
unity. A&nd, since on the basis of the properties invegti-
gated in this section of the functions x, and yn, the

quantities n,, x, entering the expressiomns ¢ and o}

are greater than zero and decrease with increasing n,
then by the theorem of Abel, ¢ 1is included bobween the
limits

-8 -
- (1 =-T) S'nn1 anq - (1 - T1) P €“n1

For the same reasons o! is included between other
arbitrarily small numerical limits, and the proposition is
thus proved,

A5 a result of all the properties which have been

-demonstrated of the series ¢ and Yy the conclusion isg

arrived at, which was the object of the investigations:
namely, that the formulas obtained are an actuzl solution

of the proposed gas flow probleuns. .

A e gt A gt b
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PART III

THE FLOW OF A GAS FROM AN INFINITELY WIDE VESSEL

The method described will be applied to the prodlem
of the flow of a gas from an infinite vessel wlth plane
walls, the simplest case being considered - that is,
where one wall is a continuation of the other. :

Consider an incompréssible liquid flowing out of
‘such a vessel (fig. 4): AB and A'B' are the traces of
the walls of the vessel; OX ig the trace of its plane of
symmetry; BCC'B! is the escaping jet. If the guantity
flowing out per second is denoted by Q, the veloclty
potential and the stream funct;on, respect1valy Yy e,
and V,, considering V¥ = on OX, then in the region

of flow ¢ varies from —~ » to +» and ¢y from
»*5 to + %. The complexz varlable

wo= @t Wy,

will be conhected with another complex variable u {(ref-
eraence 2) through the relation

s
ci

=g‘
P 1lg

The region of variation of w then corresponds to the
upper half plane of the region of u., In addition, the
logarithm of the ratic of veloeities vg/v =at wmhe jet
surface and at the point of the fluid considerce will Dbe’
denoted by ¢, and the angle of the velocity dirsciion -
with the X axis by 8, The problem is then soived 1f

4 + 18 = 4 arcsin %

1For, on the boundary "ABC W %5' o varies. from. —m
to 4+ and 1w passes through the negative part of the

real axig from 0O to «~xj; 8§ =

nidd

, ®> v > 0 if
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oo @0 > w4 >omed Y= 0, v o= Yong“>‘9m? 0. for —c >u > ~o
.On the boundary A'B'C! V = %, ¢ varies within the

same limits; e='.».§,oo>ﬁ>o for D<u<e; =20

v =YV

o,-g<e<o if ¢ <u< o The point u =0

thus corresponds to the infinitely distant point of the
vessel where ¢ = oo and the velocity becomes zero; u = o
gives the part of the jet at infinity. Finally, for

6 = 0, u 1is purely imaginary and = O and the center
line of flow coinciding with the X axis is obtained.

From the preceding formulas is found

W= e 3 1g (i sin i 19>
™ i ‘

or, if ¢ + i8 1is denoted by o,

w =-~= 1lg i sin T =7 18 — —;;(c -~ 1lg 2)
-2 2g (1 - e*9)x (55)
T

It is noted that ¢, = 0 .at the points where the jet
geparates from the walls; o in these cases has the

(1
value tig.

By expanding the logarithm in formula (55) in a
series, there is obtained: '
m Pa ¥ iwl
Q

whence

i . (_n. e..an,) L ’ .
= lg 2~(9 + 18)+ E Z—-(cos 2n0— 1 sin 2n6)
. . n - .
. o=y

" *In the case 6f & véssel with - the walls meeting -at
an angle 1t is necessary to replace in this formula o

by 2 and in the succeeding relations ¢ by E, 8 by
q _ v q
%, The angle between the walls in this case will be equal

to qm,

i
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2Ny
”E“w = -0 ;‘Xfe -8in 2n8 .
Q b p

e B
1

Substituting in this‘formula the variable T deter—

nined by the equation éL = %;~ = e"za results in the

° Yo

3‘-( ) sin Z2neo
n

Since this sgseries is absolutely convergent therefore, by
the method given above, by use of formula (23) an expre
gion i3z arrived at for the stream functiom Y defining
the flow of gas from a vessel of this kind; therse is ob-
tained: '

required expression:

#qug

| g Y, = =8 —

Y= 8 ( ) 2. sin 2no (56)

n
Q Yn,o

All curves VY = constant 1in the 71,8 reglon start from
the point T = 0 and meet again at the polint 7 =17,, .
8 = 0.

The velocity potential by formula (24) is determined
by the relationt

To=0¢4+ 31[ ar (1 — 1)-P
Q 2J T1(1 - T)
. . )
+(1-T)B$ﬂ-]1(—;—> In %X, coOs 2n8
1 “n,0

¥ith the formula for ¢, 1t is nct Aifficult to
sat up the equation of the jet. By formulas (8) of part I
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cosf dr 1 sy sind ='_7_y_;
Vo e = A—%n A T o

whence
: dy —z. 00
Vatas 5 _.sm6 —|-(1 —3) cos@ %"

" If use is made of the fornulas for o a.nd"""il,‘ there is
obtgined.

3\/5}3 "(1-—-)—'52( ) =2 (cos2nbicosh 4 x sm"nesmﬁ) ——cosO(l-—-‘t)_“ .
. Q n [ .
»Integrating with respect to ©® ylelds

QV2-431——¢’(’) (1—2)" Z( >J‘;"l,:[sin‘(2‘.3:z-l-i—ll)6 +sin:(jln;-ll)0]+

o

_ eV \" ¥n . [sin(@e4-1)0  sin(@n—1)6] . 0(1—z)—#

+a—~ B () e n Mg - ] —wa—
1

8ince, for 6 = 0, 1% shonld follow that ¥y = 0; therefore
®(T) = 0. Thus, finally,

XY 7 (I -—7)?= —sinl -+

<

~
=\, sin(2n+4-1)0  sin(2n—1)0
+Z (" > Yoo r”[ -1 n—1 |
1

[« V]

_Z< ) J_i,,o [blnaj:i—ll)ﬁ + qmg::z_i—ll)()] (57)

The series

oo
Z(:_)"_g{i sin(2e—10 | sin(2u4-1)0
T/ Yo n—1 ' 2n1
1 .

may be put into the form

Yine [Sin(22—1)6 | sin(2n-4-1)0
Z‘-’h" ["—2‘”“‘_—1—— + — 1 |’ (58)
where
T(1—)*? g (1)

Y T LA (e e

- "By the. theorem proved at the end of part II ([, represents
- .&./series of magnitudes decreasing with n. Thus the expres—
sion '
Z en |8IN(20—1)0  sin(2n4-1)0
| : _[—277:1—'*‘—”27@1—]
‘and ¢ approaches 1, or, in other words, as T approaches
"To, tends to the value - .

Y




E
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"‘Z [smf)?::l)f) Slngﬁ_ll)u'l ’

and the same limit is approached by the more complicated
summation (58) entering the formula for the coordinate y.

Transforming : I“ into

— sinf 4- QZsm(::_il-)— )

yields
—(2n—1)(¢ + i)

~

sm(2n 1)0 et _
‘22 o _Rllmt___o‘ZzZ——'Q—n—_—l— . =
' . l ) .

e 1-}-cosb—1sind
: ——-Rhm,,:oclg P T A R< S T—cosoF +cos9-|—zs1u6>
where R indicates that the real part of the expression
must be taken. It can be readily seen that, for a con—
tinuous change of & from O +to 8,
1+4-cosl—isind — \/ 1—|—cos6 ‘“'E
g 1—cosfJ-isinf — BV 1—cosd® ’

and therefore
D0

stm(%-—l)f) LT

29%n—1 2’

‘ 1
depending on the sign of 8; thus

I==t1—2-—sm6.

: In view of the importance of the relation obtained,
more rigorous method of its deviation will be presented.

Starting from the equation
m
sin2m6

Zcos(?n —1)= Semh

_ . 1
and integrating it within the limits 0 to €6 results in

m

Ecm("n— 1)0 qm"mO 0
m—1 smO
1

m 8
. sin(2n—1)0 _1 ' sinpd 0
]lmm___:m —'—2-;;:1—— iy l‘ml"—'“’JT g-n—odo
1 _ 0

and —-g— if it is negative. (See reference 7 » vol, II,
Pe 233,.). Hence,
o o
sin(2n—1)0 sm(‘)n—l)O T

I=-—sin0+22¢l =—sin0 4 ..hmm=~2 P S sin0.
1 s
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The second series in equation (57), for T = T,
approaches the expression

x|
no_ 2n — 1 2n + 1

"sin(2n — 1)8 _ sin (2n + 1)8 ]

“~78

which is a convergent series for all values.of 6, This
can be shown by considering the remainder term of this

series: -
R __S“ Csin(2n — 1)9 sin(2n + 1)91
n =, X | - "
. w 2n -~ 1 2n + 1 -

Substituting in the preceding equation for x, its ex-
pression given by eQuation (49) yields

sin(2n — 1)e S Mafsin(2n-1)e  sin(2n+ )8
=,/ 25 + &\ -
2n - 1 __®pu 2n - 1 2n + 1 |

where Xk 1is a finite numdber and A, a proper fraction.
Hence 1lim,_ R, = 0.

By now putting T = To 1in the formula for the coor-
dinate y, the equation of the jet boundary is arrived at

o
«/éaTo(l_To)ﬁ.gy =5 I2_T+an 0rsin(z'n + 1)8_ sin(2n ~ 1)6 |

2n + 1 - 2n-1
1l

™
where the upper sign of 3 corresponds to 8 greater

than zero.

If the width of the infinitely distant part of the
jet is denoted by 2b, then

2bV2a T, (1 ~ o)a

for +2aT, is the velocity at infinity, P = pgoll - T)B

sin(2n — 1)8 _ sin(2n + 1)8

-7 (59)
LU A 5
2b ,3,”2Lin 2n -1 . . 2n+ 1 1R
® L

In order to determine the jet contraction, it must
be noted that, for the conditions under consideration.

= 1 :
(To z m) » the contracvtion oceurs at infinif.y as
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in the cagse of the outflow of an incompressidle liguid,
Thus, if the maximum contraction were at a finite dis-
tance from the orifice, it would then be followed by an
expaneiont The streamlines would be turned by the con-
cavity toward the ingide of the jet; the pressurs would
drop from the surface inward and would resach a minimum

at a certain point on the line of symmetry. a4t this
point the velocity would receive its moziwmom value, which
result is impossible., Thus the contraction will be equal
to the ratio of the width 2b at infinity to tae width
2a of the orifice of the vessel. This ratio is deter-

mined from formula (59) vy substituting | = 7 ¥ =R,

and taking the upper sign of the first ternm on, the rivht~
hand side. Then there is odbtained :

o

—
Ta k14 % R 4n

w—i— = e Y p—

2y 2 ér( 1) 4p2 - 1 *a,0

wvhence the contraction is

Q- LI , (60)
~
a —
Y D—-1 n
m+ 8 (~1) Bl X o
- 4n® 1
1
o
N N3 n
The series S .-:) (~1) ———— Xy must be con-
' T o4n® ~ 1 *

vergent since it is an alternating series with numerically
decreasing terms. Another way of proving it is by subsgti-
tuting for x, o its expression, formula (49), of the pre-

ceding saction. Thus the remainder term S of the series
is found in the form '

m .
- N1 n Ne] n
Rn = 4’.{.., (-—1) e :—i l - Bﬂao + kso T (....1) ,.;.4..73
n ’
1./--——-——-—-—- ( )n““l Z n—-l x .

where 1t .1s clear that it approaches zarO'with increasing
n, for Xk 1is a certain constant and XA, & proper frac-
tion, : ’ '
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1 and this leads to Kirchhoff's

For Tg = 0, xp, =
formula
e ._%_ .fﬁ
- = - = 0061
a ™+ 2 .

This will be the approximate value of the contraction for

o

n

n
4n® — 1

' 1
for finite velocities and finite difference in pressure
between the reservoir and the medium into which the dis-
charge occurs, use is made of the approximate formula for
Xne

The limits between which the quantity L is con-
a

tained are found by taking an even or odd number of initial
terms of the series

oo

n-—-1 n
R

4n® ~ 1
1

In the first case the positive terms are replaced by the
lower limiting values, and the negative terms by the upper
limiting values; in the second case the reverse is done.
This computation will be made for the limiting case

To = gggru— considering only five terms of the geries
for determining the upper limit and six terms for deter-—
mining the lower. Use is made of the values of =x,,. ., .
xa computed in part II and the upper and lower limits

of Zz (-1)"" ---xn are denoted by 4 and B,  respec—
n-! : :

tively, to find .

0,.5254 2 X 0,4703 + 3 X 0.4343

B = ,
S s 85

_ 4 X 0.4095 + 5 X 0, 38%2 - 6 X 00,3755
63 99 143

whence, with an accuracy of 0, 001,
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B = 0.128

‘*By“rejecting'the“last term and ndding the possible errors,
4 1is odbtained, The errors will add up only to 0.0003
and will have no effect on the accuracy desired., Hence

A = 0.128 + 0.015

Substitnting these limiting values of the summation in
formula (60) yields

. . I b "

e v gy K & e e e e

7T+ 1l.14 a m+ 1,02

r, if the computation i€ carried out,

0.73 < 2 < 0,75

ig approx, 0.74.)
a

P o

Thus the_jet expands with increasing pressure in the
_regsrvo¢z_40 hhe. ler*iqgﬂlaggh“ Tvs extreme dimensions

in widith are 0.6‘ X 2a and 0©0 74 X 2a where 2a asg
before denotestlec width at the orifice.

An ayproximate funcitional formmla for the contrac-—
tion i3 oTtalced by making use of the approximate expres—
sion for the function x, given by equation (45), which
may be changed to

2
x, = 1-fs - P5_x
2

M i N
n+ 1 2n(1 -pBs)+ 3+ (B+ 2)a

The coefficients L, M, N .do not include the parameter =n
and have the values

_ 0 = 2 + 1
1 - Bs T T I ¥ (s 2)s
N=2(28 + 1) | ot P8 - ]
-1+ (38 +2)s 1 ~ Bs
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If, as before, it is assumed that B = 2,5, there is
obtained finally

=1 bs + 15s® 1 +15s”- 2 1
T2 4 —-53) 24+19s w1 ' nful(2—5s)*  2419s)’
where
6-+9s
Y= 1105

The series S entering equation (60) readily can
be computed by setting
N

9
8= (1)
1

- ns_2hs n—1
""_[1“2 = 55)]2(_1) 4n-’ it

(61)

1552

"+19SZ( )n_—l()z—'—l)(4)2 1) +

+ 155 | — 5 1Z("”"_'oht.u) =y

where for simplicity s, 1is replaced by s, The first
summation im equation (61) for S 1s of the form

1 1 1 1 1 1 1
ZP+§“?_5+3+=‘= """ ]

It 1s necessary now to return to the computation of

‘ e n
'7(!".)=Z(_1) (n4-u)(n*—1)"’

The particular case of this seriles corresponding to the
value p = 1 will be the secornd summation in the equa~
tion for S, A4nd o(p) may be expressed in the follow-

ing form:
1
(P T
G(y.)_JZ( 1yt

The series under the integral sign can be summed, Thus

”tn #—1 ty-—l t- ta 3 t-l t4
1"“ = 3=y s trts—s—s
Y [t+ st e—t 9+....] :

D .
Since the series within the brackets is absolutely con-
vergent for t < 1, the order of 1ts terms may bdbe
.changed and. this gives - -
7
t t2
_;._T—l_- . .)_

|
TN
h
DO s
l
@ ot
+
! | Ot

nihte—1 t“ 2
Z(__l)n—l . —_
: 4n°—1 4
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n—%( o 28

4 3 £ 4 = 1 1

- _r —i

\! 3+,5—"--' +T—T[1——,2-arct\/—]
Thus

1 3
“_—

4_0' =4 —1)*! e = — ——f — o
() Z( ) TR E =D ~ & 0 ¢ (1 t)arct V" dt
or, by integrating by parts,

s S |
tp (g
4c ol
()= 2y.+1 4p. —i + L)1 €2
-0 '

whence
2
40(1) =g e = + lg2_0 5437,

When the results are added, there 1s obtained for the
contraction
b ! 1
' @ TT-}-—s‘S
255° 168%
88=2—bs,— o 5s)+ 3 +19 a—{1,0874—8a(w) ]+ (63)

-+ (—2:'55280 )

P

6"'9'0

where | = -2, o(u) 1is determined by equation (62)
4 — 108,
and 8, by the ratio of the pressure in the vessel to that

To
in the free space, 85 = — which by the formulas of

1 - T,

part I is
7

b o
p, =0 P (150 * P=(14-s,).

0f greatest interest 1s the jet contraction for a pres-
sure near the limiting value — that is, for which the veloc-
ity of the escaping jet is equal to the velocity of sound
propagation in a gas at rest of the same physical state. Thie
limiting pressure corresponds, as has bdeen -hown to the value

1 1 1 \P
To = 8o = — and has the value Po = P3\1 + —.
2B + 1’ 2B 2B

= 1,89 p, - that is, 1.89 atmospheres - if tho pronsnrc in

the fres medium is equal to ‘atmospheric.- It

_ &+9§_
= 4105,
is set in formula sy = .2}.5 = 0.2, the result is W = 3.9,

To compute accurately the definite integral,
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1
1
., J’,(“')F,f L-—-di
N o)

for such value of L 1is rather laborious. In view of the
fact, lowever, that this entire computation is of an approx-
imate character, the preblem may be simplified: namely,
compute j(4) and j(3,75) and then because of the near—
ness of the values of these integrals, find j(3.9) by
simple interpolation (assuming proportionality between the
increment of the function and of the independent variabdile).
There is readily obtained ' : '

v . : |
s
j(a) = Jr 2 et =1-24+ 1 1g2 = 01402
1+ ¢ 2 3 :
. 0
11/4 -

5(3.75) = Jr AJ at =4 (2 _ 2L 1N\T /> lg cotg T

1+t 8 v 1173 8

0.1500

whence j(3.9) = 0,144; and by equation (62)

40(3,9) = B _ ul + 15.6__ 0,144 = 0,212"
8.8 8.8 X 6,8 8,8 X 6,8

Substituting thias value of o(W) and the cerrespond-
ing sy in formula (83) yields

8S = 0.5 + 5. x 1,087 + 59 x 0.424 = 1.08 . (64)

29 . 145

the mean value between the limiting values of the series
85 obtained. The contraction then is given by -

LS .
2 T+ 1,08

*The procedure for checking is as follows: Compute
the accurate values 40(4) = 0.2079 and 40/(3.75)= 0.2193
whence by interpolation again it is seen that 40(3.9) =
00,2124, =a value agreeing with that already obtained,.
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‘TPhis coefficient decreases with decrease in the pres—
gsure in the reservoir because of the increase in value of §,
Thie decrease is sufficiently uniform, as may be seen from
the table: -

s, (0,2 | 0,182 | 0,154 | 0,137 | 0,117
Lo |1,89] 1,79 | 1,656 | 1,56 | 1,48
5 — (65)
> 10,74 0,73 | 0,71 | 0,70 | 0,68
w |3,90]350 |300 |27 |250
| 5,90 ,

Finally, the expression for the quantity of outflowing
gas 1e given by .

E——2a -—V 2a- .090(1-}-':0) R
where p_ is the density of the gas in the veusol (at a

far-removed region from the orifice) 2a, as before, is the
width of the orifice and a 1is defined by the formula

kY y—1
a——'—
- 1P0

?

whera
7==L4&=d4—%

It is necegsary firet to consider the case of the
outflow of a gas from reservoirs with various pressures

- Sl caqpatitn v e S o s

the(atmosphere). Then

1+8 ' \1+B
I 2 N / L1 (o

: * ."'—1 b, r‘n 1 L )u> ’ so+1—_ ) ’
and the final formula

g__ 1
o v\ /2T b]/// ri\** (V'

or, again, if ¥ = 1,40, 2

- E—2ap, e‘o’é]/(ﬁl) [1_<17i)
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Since the contraction ~ 1is a function of g, and
el

‘therefore depends on the ratio %w, with constancy of

1
the ratio, the discharge quantity of the gas las propor-
tional to the square root of the density or inversely
proportional to the square root of the temperature,

Now suppose that the state of the gas in the reser-
voir remains unchanged and consider the flow ianto a me-
dium of varying pressure, The velocity of sound in the
gas corresponding to the same physical conditions at 2
great distance from the orifice 1s denoted dy ¢4 Then

‘ . e— L Amanl SRS T
co = /v%% =-../:.:'w:>‘:v’:E =Jy~-1a

and the formula for the discharge may Ye given as

. . ' 2 : Y 1
- — 2V /P13 Y
B = 3aco /‘Y — 1Poq / P, |3 “\Po) ] (67)

or, by subgtituting ¥ = 1,4,

] < b //Pl\}"gi' 1 ; ;
E = 2acopo V5 " / \1;-:/ ‘.1 - (—g—;) ] (s?' )

In thisg formula for B only the lasgt two factors
that depend entirely on the pressure ratio vary.

As regards the jet contraction or the discharge
coefficient as the magnitude b/a also will be called,.
it is accurately determined by formula (60) and approx-
imately by formulas (63)., Por an approximation of accu-
racy up to 0,01, numerical values have been given of
this coefficient for the limiting pressure and several
other smaller pressures. It is found that .a practical
result of the same accuracy is obtained if, instead of
the cumbersome. formula (53),‘the following expression

b = AN$

is taken for -
L a
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" ® kil (68)
¢ . = - = : " 8
A a m+ 2 - kso 6

where k 1is a certain constant. This formula gives very
good values of the contraction for small difference in _
the pressures between reservoir and free medium = that is,
for s near zero; for s, = 0O the values of b/a by
(60) and (68) agree with the Kirchhoff formula for the
jet contradtion., ' The constant k is so0 determined that

1

for s, = T = 0.2 the results by (68) and (63) agree.

For this it is necessary that

(2 - x)(0.2 = 85(0.2))

and, since B8S has been found (in equation (64)) equal
to 1,08, k = 4.6. The values of 85 for the values

of s, given in table (65) are correspondingly equal to
1.08; 1.16; 1.28; 1.35; l.44. To these correspond

1.08; 1:17; 1.29; 1.37;-1,46

nunerical values of the binomial 2 — 4.6s, entering
formula (68) in place of 88,

Such difference has no effect on the results for the
second decimal accuracy which has been assumed,

The agreement will be even better if the discharge
coefficient is expressed by the formula

X =0 = m B (59)

a 2
m+ 2 - 58, + 259

The serles of values of the function 2 — 554 + 2so° for
the same 8, will, to an accuracy of 0.0l1, be equal %o
1.08; 1.16; 1.28; 1.35; and 1l.44, which are egual,
respectively, to the above obtained approximate values'
of 85 entering the exact contraction formula. Thus,
formula (69) or (68) for k = 4.6 quite well expresses
the function A and may very conveniently be applied for
practical purposes, The discharge formula (67) for the
assumed round values of ¥ = 1,4 and B = 1/(v - 1) = 2,5
tak a sufficiently simple form if the variable 8, 1is
introduced in it. The latter, as has been Shown is con-
nected with the pressure ratio Po/Pys
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=)=

1o

'By transforming egquation (67) in this manner, the discharge
formula 1s obtained as follows:

.. A Vbs, .
E=?‘acopo (l+S ) ‘ 7 . (71)

It 1s noted that of the two gimplified formulas for A
the second, (69), is the more rational, Thus, to turn for
& moment to formula (60)

)\ — <

7‘+SZ('—'1)”—] —1 )

and substitute in it for Xn, o0 the trinomial

7, (05,2, (0)+ % & (0).

expresses approximately the fﬁnction Xp. From the equa—

tion for Xpn

o st14-s) 4z, ﬁs%—nrnz——n( 1—20s)==0
which gives for =x,(0) = 1, x4 (0)

o nP B 2+1
0)=— 2 =
Wl 01=— —B* B 05
Substitute these vaiues in the above trinomial and compute
the series S entering the denominator of the formula for

Al
O . n 28 — n
S:L(—])n_'4 —_ ( — fBs,— ﬁ_s )—{—B 1! —s, 5’( ne '(4 Y1)’
but
| N S O
=TT =5
| ‘ )
Z n 1 ¢ d (1+f—-—] J
(—1)"— Z( nT—,- t ——( — arct‘g\'t):t
]Hn U J : . ’
N + 0 \/f_
or carry out the integration
Ve H 4 T2 ..
42‘ D" G g = 38t 3 =0.5437;
whence ’ '

o 2
8S = 2(1-— Bs, — [32 s°“>+ﬁ(9[3+1)0,5437s”"‘

v~A§§ume~as;before B = 2,5, which gives

85_—.2—-—.530—{—1,930”
and

5 n
T w4-2—55,-+1,9s,°
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Limiting ‘to an accuracy of O, 01 consider this formula

lidentical with (69),

‘It is considered of interest, finally, to call the
readerts attention to a very simple connection between
the variable sy by which all the characteristic con—
stants of the problem and the temperature of the jet is
expressed, TFor the density and the pressure within the.
gas flow the formulas ares

B
p = pO(L-w)

? ='kpY = kpov(l--—‘\’)aY = po(l~7)ﬂy

hence
2 . Po(qumyP(¥-21) . Po(i.ny
o O po
and since by Mariotte and Gay-lussac's law p/p = RT,

where T 1g the absolute temperature at the point con—
sldered, the foregolng equation may be rewritten as

T 1
— = ] T e
To . T l+s

since & = —ae (see pt, II)., Applying this relation to .

-t
the part of the jet remote from the orifice and denoting
the teaperature of the gas there dy T, yields

T *'T T q-T
To = 9 ni. 8, = 28T 2 : (71!)
TO Tl

This investigation on the outflow of gases will be
supnlemented by comparing the results obtained on the one

-hand with approximate theoretical formulas applied for

computing the discharge and on the other hand with the
results of tests, Purvtly empirical formulag are not dealt
with although some of. the latter well express the phenomenon
within certain lipits, as, for example, tre formula of
Parenty (reference 8). :
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For a rational basis of the approximate theoretical

“treatment the adiabatic law was assumed (also in this

investigation) thé &dssunption being made that-the. out—.
flowing jet at a certain distance from the orifice has
the maximum contraction and that at the peoints of this

‘contraction the velocity of the gas particles is constant,

As a result the following formula is obtained for the
discharge formulea:

E= Se, /-—1 J(/> 1—("1) ] .(67.a)

where § 1s the orifice area and A the discharge

coefficient equal to the ratio of the area of the con—-
tracted cross—section to the area of the orifice,

The above equation does not differ in form from
equation (67), the only difference being that the dis—
charge coefficient was not determined for any, or even
for a particular shape of orifice, It has usually been
assumed that it has a constant value depending only on
the shape of the vessel and orifice, Such assumption,
as is seen from the problem solved here, is far from
true, In this case this coefficient, for a change in

%l from 1 to the limiting value 0,53, increases fronm

o

0,61 to 0,74, The increment thus constitutes more than
21 percent of the lower limiting value, If the orifice
were pound and not in the form of a slit, as in this case,
a still sharper difference in the values of A should bve
expected, for then the lines of flow would converge toward
the orifice from all azimuths and not from two as is true
in the present case, TFor this reason, when it was attempted
to apply the discharge formula with constant A to the de-~
termination of the true discharge, experiment did not turn
out to be in agreement with the theory, 'In view of this
Parentyv(referenCe 8) relying on the tests of Hirn (refer—
ence 9) assumed that to apply the formulas based on the
adiabatic law of pressure change to flow discharges from

orifices was_ jincorrect, .However the results of len's

tests whicech he presents show preclsely the increase in the
discharge coefficient A which is predicted by the present
theory, The possibility of such a varliation was foreseen

by Parenty dbut having remarked on it gave it no further con-—
sideration since he had no means of making a gquantitative
estimate of the increase in A,
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Anothker fact is considered here that is of interest,
Having obtained the discharge formula (67a) Saint-Venant
called attention to-the following paradox, If this for—
mula were applied for any ratio of pressures in the ' res-
ervoir and the open medium, the discharge, increasing from
zero, would pass through a maximum for a certain pressure
ratio and thereaftér should again decrease, becoming zero
at p,/po = 0. The value of P for pl/po “eorresponding
to the maximum discharge is determined from the condition

1

%[ > .,

hence

Y B+1
/2>' =<1-— l) = 0,53
\Y+1 28+1

This is Jjust the limiting pressure ratio correspond—
ing to the instant when the gas in the contracted part
of the jet moves with the velocity of sound propagation
at that point, as remarked by Hougoniet (reference 10),
This condition cannot of course occur in practice, When
Saint—~Venant conducted his tests on the flow of gases he
found that on lowering the pressure in the free medium
and varying the ratio p,/p, from 1 to 0.53 the discharge
increases; but on further lowering p, the process becomes
regular, there being no further increase in the discharge,
This surprising result was long looked upon with ddudt but
Hirn's tests, conducted not very long ago, confirmed the
results of Saint—Venant with the difference, however, that
Hirn observed an increase in the discharge beyond the limit
indicated by his pnedecessor ‘According te Hirn's tests
the dlscharge Teaches tha maximum value for plfpo = 0,26,
approximately, The change in discharge on lowering pl/po
from 0,563 to 0,26 is, however, insignificant, for which
reason this may not have been noted by Saint Venant in his

lesgs detailed observations, == - -

. If it was attempted to apply formula (70) for A
determined by relation (69) beyond the proper limits of
its applicability the same paradoxical result would be
obtained except that the maXimum discharge would corres—
spond to a value of p,/p, somewhat less than 0,27, a
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value very close to Hirn's 1limi¢, This interesting agree-
ment shows that the present formula expresses sufficiently
well the investigated phenomenon in its essential features,

It is now natural to lnquire into the character of
the motion in the case where the pressure in the free
medium into which the Jet discharges is lower than the

limiting, that is, if 21 < 0,53, 1If it is aseumed that
flow remainsg steady with continuous change in the velocity
and pressure within the boundaries of the moving gas mass
the region of the variables 7T, 6§ would be in the form of

a semjcircle of radius >-§§:1, This is the very region

considered in part I where it wags shown that steady motion
of the type that is of interest to us was not included in
the number of possible motions, Hougoniot{(reference 10),
states the followings if p, < 0,53 p, the escaping Jet
is divided by the surface over which the velocity of the
particles is equal to the velocity of sound, into two parts,
the pressure in passing throcugh this surface changing dig-
continuouslys adove this pertition surface in the Jjet the
pressure is equal to 0,53 p, and below it is equal to p,,
(Phis phenomenon reminds Parenty of the separation from
so0lid bodies,) But the flow of the gas is considered as
steady in both parts of the escaping jet and the surface

of pressure discontinruity as everywhere normal to the
streamlines,

This latter supposition appears highly improbable
since the character of the metion in the upper part of
the flow should radically change immediately after the
pressure in the free medium passes beyond the limit of
0,53 Pye In fact, first of all 1t can be easily shown
that the width of each elementary tube of flow will be
& minimum at the point where the limiting pressure occurs,
This is because the cross-section is determined as the
retio of the quantity of gas carried by the tube divided

by po'J éaTo(L$T°) . and this denominator passes through
‘ .ghmaximugﬁgt- T =~§§ti' Therefore taking the tubes of flow

normal to the line T = EE:T' a minimum discharge of gas

from the vessel shall be obtained for the case where this
line is a segment enclosing the orifice, The discharge
coefficient will then evidently equal 1 and, thereforsd
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in pasging through the limiting pressure in the receiver
this coefficient and the gas discharge should immediately

increase by more than 30 percenat, a condition that is in
entire disagreement with xeality,

It is assumed on the other hand that the phenomenon
could be explained in the following way, Together with
the authors referred to it is supposed that the jet is
divided by a certain boundary surface on passing throughi
which the pressure changes very sharply, It may be .
imazined that the trace of this surface on a plane parallel
to the flow as & curve supported at the edge of the orifice
further on the curve resembling the contour of a tongue of
flame moves into the open medium, Above this limit (inside
the vessel and the addoiningvpart of the Jet) the flow will
be stable and the pressure drops from at the far re—
moved parts of the vessel to 0,53p, on 8he descrided
boundary curve,” At the remote part, however, the Jjet
forms waves,* These waves have an enveloplng boundary
curve, In a very thin layer of this part of the Jet adw
Joining the curve the mean pressure will be < 0,53p, and
the velocity of propagation of sound ¢, < ¢, Dbeing the

same velocity for the boundary layer lying beyond the
boundary curve, The lowered pressure tends to be prop-
agated beyond the boundary curve, following aleng the jet

in the form of a plane wave, But this wave is carried
backward by each infinitely thin Jjet element and. since

the veloeity of the gas particles ig also ¢, no waves

are observed in the upper parts of the gas flow, In order
that the boundary curveg may serve as an envelope of the
waves approaching it, it ie sufficient, as it appears to
assume that the velocity of the waves normal to this liae

is the same whether the wave moves upward or downward, If

A denotes the angle formed by 2 jet element with the bound-
‘ary curve passing through a given point, then having deter—
mined both normal velocities by Riemann's rule equating them
and applying very simple hydredynamic considerations there
is obtained :

Rd

*These waves have been observed and studied recently

by Emden, The results of his tests are descridbed "in refer-
ence 4, The waves eppear immediately'after the pressure

in. the reservolr drops below O, 53p°. their length increases
with the lowering of the pregsure in the reservoir, . Zmden
also gives 2 theory of the phenomenon which, however is
entirely unfounded, It is sufficient to sav that notwith~
standing the existence of waves Emden considers the pressure
throughout the jet as constant, which of course is impossidle,
and makes thils assumption the basis of his analysis.

B
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sin) = ...S'.J.._:.f_&..

(1+El
Pz

If the pressure and density varied, even very sharply,
but continuously, p,; ¢ pp = 1, Thus it is seen that

the tubes of flow intersect the boundary curve at a_con-
stant angle

With this hypothesis steady flow above the boundary
curve may be determined strictly mathematical regardlﬂss
of what occurs in the remaining part of the jet, It is
not difficult to show; namely, that on this curve, given

by equation T = To = _3;_ the relation holds

2p+1
g
oter(1l-7,) £ ¥ = q

one sign corresponding to the left half of the boundary
curve, the other to the right half and V¥ and ¢ ‘denoting,
as before, the stream function and velocity potential, In-—
cluding this relation among the boundary conditions it may
be shown next that, together with the other conditions, it
is entirely sufficient for the determination of o and W
in the T, 8 region, Having found ¢ and VY it is easy
to determine the gas discharge per second, It appears that
if this discharge were strictly constant or changing slightly
with change in A from zero to its limiting value, the
explanation Jjust given would be near the truth, Incidently
it may be said that the limits within which A may vary are
not wide; this angle will not bYe large, For this reason

the relation previously given between V and ¢ in 2l1
probability will give a result not deviating too much from
that which would be obtained by simply taking V¥ = *Q

along the boundary curve, A small variation in the dis-
charge may also be expected from the consideration that

its value will depend on JSsinAds extended over the

boundary curve, This integral is evidently equal to the

" total length of this curve . multlplied by s1nx and its

length will decrease with increasing A, It may ‘be noted,
finally, that in assuming the above explanation of the flow
phenomena there is obtained an entirely continuous transition
from the problem solved above to those cases where the given
analysis is inapplicable, A mathematical treatment of the
proposed hvpoth381s is intended in the near future
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PART IV
PRESSURE OF A GAS JET ON A PLATE

The study of pressure of a gas Jjet on a plate will

‘begin with the consideration of the impact of a gas Jet

on a plate perpendicular to the initial direction of the
Jet, assuming that the jet is symmetrically divided into
two parts by the plate, A4gain the corregponding prodlem
for the case of an incompressible liquid is used, The
solution of this prodlem is given in the paper by

Joukowsky (reference 2). By use of the same variables.
as in part III, , : R '

w o= o + 1V,

i
<
+
PJ-
@

z =x+ iy, 1g vy %%'

gin ™ m :
cpl+1\}ll=—§%-_;lg[l- — } (71)

where m 1is the angle of inclination with the X axis at
distent points of the two parts into which the jet is
divided by the plate. TFor the X axis the line of symme-—
try of the jet is taken, the initial direction of the

- Jet being in this case parallel to the X axis.

It will be shbwn that formula {(71) exbresses'pre—

‘cisely the required liquid flow. Attepmtion will be

directed first to the range of complex variables 'w and

9 + 18 vwhich correspond to the flowy sketched in figure
-5+ The region w is bounded by two straigzht lines par-

allel to the real axis, symmetrically placed with respect
to it‘atia-diétance %. In the sketch the outer bound-

aries of the jet EA' and DC' correspond to these straight

-lines,. -The,flow. boundaries. (B0 and AYO corregpond to the

upper and lower sides of the positive part of the real
axis of the region w; the pqint 0 corresponds to w =0,

The region 9 + 18 4is bounded, ip the first place,
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by the segments of the straight lines parallel %o the

- e e PR C o owm . i ’n.

axis and having‘coﬁ?diiiteS‘“9“=jg- and 9-='ru§» lying.
to the right of the imaginary axis; in the second place,
by the segment of the imaginary axis lying between the
above—mentioned parallels. On the sketch the straight

line 6 = g corresponds.t® the right-hand part of the

plane and the line 6 = —‘g to the left-hand part. The
segmént of the imaginary axis included between the points

8 = g and 6 = m corresponds to the boundary YA of the
flow, for here the velocity is vy, 4 = 0. The segment
symmetrical to that just mentioned corresponds to the
curve BC., PFinally, the boundary C'D is represented in

the & + 18 region by the segment included between the
points 0 = —-m and 8 = 0O of the imaginary axis and the
curve EA' by the segment bounded by the points 8 = O

and 6 = m, .

‘Now, proceeding along the boundaries of the 4§ + 18
region, the authoy will show that the point w will then
describe the above-mentioned boundary of the w region.

With the point 6 = %, = ® as the starting place, it can
be seen from equation (71) that for these values of ¢

and 6, w = 2kmi, where Xk is an arbitrary integer -~ it
will be taken equal to zerdo., If now the point & + i6
moves along the line © ='%, then w moves along its
teal axis at the upper side of this axis, since for 6 =
5 - €, then, at infinitely small €, ¥, = k ¢, where k

is some positive quantity, When the point 4 + 16 arrives

il ,
at the position 84 = 0, 6 = 5, w will have passed along -

the segment of the real axis from 0 to P, =—-% 1g(1— sinm),

As 8 + 16 moves farther along the imaginary axis, the
point w  will continue its motion along the ¢, axis in

the same direction up to p, = ® corresponding to 3§ = 0,
8 = m, In passing through the point & = 0, 6 =m, the
logarithm in formula (71) receives an inecrement - Ti and

for 4 =0, m> 6 >0, w will move forward along the
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.

straight l1ine w = ig- from +wr1% ta-wcu-ig; this position

w -gorresponds to 6 = 0, In passing through the point
4 = 0, 8 =0, the logarithm of formula (71) will receive
an increment 2mi and w will pass discontinuously from
the upper boundary of its regionr to the lower and will

move aldn‘g it from «w--—‘ig‘- to + o~ 1% ag & + 1@

moves from O to ~ im, Further, as ¢ + 16 moves
through ~im, the logarithm increases dby ~7i, w Jumps
to the point + « and along the lower side of the posi-

" tive part of the ¢, axis returns to its initlal posi-

tion as 8 + 10 moves from -—im to —-1§ and frém
—-15 to e -1.-3 along the boundaries of its regilon.

Thus the fact 4is shown that formula (71) is an ac—
tual solution of the problem of the impact of a liguid
stream on a plate. In order to solve this prodlem for
the gas jet, 1t is necessary to proceed according to the:
rule given, The expression w 1is expanded into a series.
and its imaglinary part separated.

.Thus,

A . 8 |
20% = 2 1g sin 2 +i 18 _ 1 (sin2 1‘-—%—-}-9- - 8in® m)

= 2 lg sin s+ 18 lg (cosZm - coszé +1 iO) + 1g2

i
= 21g sini-i_--}-g - 1gsin£~i§~'¢l§—1gsina+ ia; im‘

Introducing exponential functions in place of the trigo-
nometrical transforms this into
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_21"(1_( 23-—‘.’:’6)_1‘9‘_(1_(:—23 -—»-21'(9——)»)) .

‘ — 232/t e G s :
—lg(1—e A +am) )= 2—7 —: cos2n(—m)—isin2n(0 —m)-4-
n=1

.

c0s2n(O4-n1) —isin2n(04-m)—2cos2ni4-2isin2n0 } ’

t

'aftér reducing,

or, .
— 203
Z-—-——— (1—co2nm)(cos2nl—isin2xn0),
and, finally, for V¥ )
T:'Ll i o 2n3
= Z sin200(1—cos2nmn
Q
1

(9]
7—%—'= Z %( _l > sin2n0(1-—cos2nm). , -~
1

This is the expression of the stream function in
the variables v, 8 for the liquid flow, Hence for the.
gas flow the same problem should be solved by the formula

o
::Q Z ’l ( > ., sin220(1-—cos2nm). (72)
- :

According to formula (24) of part 1 the following
expression 1s obtained for ¢: :

(s ]

-\
—33 — (1—3)~7 Z 1 (__— ) yz”— z,c0s2n0(1—cos2nm).  (73)
T ‘ _

n n.0-

75
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If it is assumed that C % O, then, as in the case
of the liquid flow, T= 8= 0, ¢ = 0, and ¥ = 0,

The series for ¢ and V¥ are absolutely and uni.
formly convergent for any T < To as is clear from the
general considerations of part II, ard therefors the
problem is solved by the relations {72) and (73).

" The width of the plate and the pressure on it will
now be determined. The width of the plate will be de-
noted by =21, Then ! is found by substituting in the

.
expression for the coordinate ¥ the values 6§ = E .

T "—"To.
But -
=3
dy = Ei dop + Ei ay, y = (fdy)
A oV e::g
and, since for 8 =, V= 0 = constant
2 i
T2
(ay) = 3 ap = oY 29 g7 = sind 3¢ art
= dep dep OT Joor 37

2
By subgtituting the formula potained for ¢ and noting
that

- _n
T=To, 5‘5

1 = // g ¥

there 1s obtained
' T

n~1. — -
A Sﬂ{<*1) Lzgos Zan [18. (1 .7) ? ("Pyy
71 ./ 2 ﬁ?i\ nTQ ¥n,o . aT

+ 1
+ Iy ) al ()

a7

In computing the integrals entering this series, 1%t is
noted first of all that
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d 5 P T” , 1 d —
d“'T(l—"')—"J‘-(T Yot P >'=;z =T 7(1—7) ‘Bz’“

and on the basis of the equation for zp,
d s . .z
& 14— =1 — (2f41)s] )
Hence
. 'r°d
; N =", \d=
J(‘;o)_=f£(1— ) ﬁ:( T, 4 y,,)T_'=
o _ =

d'c

'/_'~——'c(1—'r)_ﬁz ——./T (A—=)"F2,  + (75)

1 ((1—)~F7
+‘-2—"&J (———T‘/-)—-——; "(IT.

On the other -hand

Tzl_ ) P (11—
T zn - — - z
7z dz = :'; ”.0+

+2 I 1—(2f41): (1) —F—15 dz;

-/

and sigce on the 'basis of the differential equation for
the function 3z,

n?

therefore

%o
) (1—1:)“'6.0’” a —':0\_3 1 d< -8
J T dr= VT, oot gy 2n° | ,/ ll" A=) =
1—z,) P
( :* 2y, o+ % J(5,)-

‘o

Comparing this relation with (75) resulte in

4dn—1 —5( Zno -
in J(To)z(l T ) ? ( + '/ “u~ n “ ) ’ (76)

ar

4n % .- d -
J(—)— —1 (l_-)—" jor "n‘/— it __(1—-') ‘zn'ltd.: lg""u '/;;

Since zp = Thy,, 1+ % %’_n = xp,

IR =g ) 0—)P  (16)

&4
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b3
¥ith the aild of formula (76'), equation (74) can be
“written in the form '

o u-] COSQ;Z-))I.

@7
+‘Z( 1)"__,_1 cosﬁzm T }(1_ )_.,

4n’—

The first of the summations entering the above formula
is an absolutely convergent series. It 1s computed as

follows:
n—y 10 cos"nm w— 1
Z (—1) Tt _2 (—1) 4n°—1

~ .
. __qyn—1 COS2nm
Z( D P o
1
N
1 1 1 1,1,1
n—1 ____ 1L - Z e 2 -
Y ey 2(1 3—3t;t5
‘ .
1 /=
7+ + . )_5(5—1)'

n—1 COS2nm Z n—1 COS(2n—L)m
Z( —1)" o —cosm Y (— 1 S

_ a— SIN(2n—T)m
smmz (=" a1

1. is readily uotn, hovover, that

cos 2 _1 y __. . 2 —1
K,_.Z (=1 s(2n )2;2_6;“( n )m=

—f Z (-—-1)"_l 4 [cos(2n—l)m—isin(Q;z;—l)»;;]llt=

0 1
.1 eo '
v’u——l
n—1- -
[ Z —1) "n dt
o ]

whore [ = te—iB
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*’"l—l
Since Z (—1)*! .;’” 1 arctgg. the integral obtained
1 . ‘

is expressed 'as follows:
1

e Y-
K= tarctgte'“"‘dt 1 arctc, et __ !- j‘ t-e e di
1 l t —2rm
U
1 ™ : d ‘
‘ l". t .
=2 tee 1+t2e_"""

Im

D = g (e aretge—in— 7
and since

—im __ l / l+smm

aretge =g 5 1—sinm ’

therefore
cosm , sin 2m _14-sinm

(1+COS2’ n— 2 + 8 °1 —Sinm

+

sinm | 14-cos2m 1+smm)
Um—
+ ( siu2m 2 + 8 Is 1—sinm

Returning to the initial formula for K, :I.t is seen
that the first row of its new expression gives the expres—

=S
- N

sion in finite form of the function L (—nr—?
1

and the coefficient of 1 1in the second row is equal %o

cos(2n—1)m
a1

[ V]
_Z(_l)n—l _sﬂl_(%-_l)m" then (78) yields

an*—1 ’

Z (—--1)"“‘1 Z(;s:?@_z %(~ cosm — 1 )

a.nd.. fina.lly.
1——co 2 = :
Z (__l)n-—l 3. 721.)‘1 =7 (»1 — COSM) . (79)

Making use of this formula, equation (77) is finally .
transformed into the following relation
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v_ e {-‘2-(1-cosm) 4

(50)
+Z< yer 1'—"}(‘leéx‘s‘enm>}.(1;fo)f~ﬂ;--

!he serles 1n the above formula nust be convergent. - In
order to prove this the remainder term is set up, making
use of formula (49) of part II for x,. There results

2y =V1— —Oﬁ" + kA,

8
; ’

R Vl—?Bsoz (—--1)"—l l (l—cos2mn) -+

+ Ks, Z‘(—l)','—’(l—‘-cos%m)/\ v

3

‘It is clear that the lim R = O, since A, and A,

n n
are proper fractions. ' '

By passing to the computation of R -~ the resultant

‘pressure on the plate — the pressure 'behind it is denoted
by p, and it is noted that

=2 f(p—p,)dy—2 f {-%-_ }~—2p,z

6-=—

2

3’|—e '

But

p=kal=kp, H(1—7)f+1, since o—p (1—1)f,

hence the integral entering the expression for R = it

is denoted Dy T — on substituting the value of the
.funct:!.on P, 'bocomes

T-— nhp,” { (—1 ),,_, —cos2nm

/2 776" Yo

I(l—--.-)p"" s (1—1) —# (-; , +T—”-’;—ly"”) “_;.;: :

e ’()- s r’_ I I N

l‘urther. .using the oxprouion
. T
ECE

0/

({1-”-‘?.)‘ (t"y,; + "—JH s/,.) '}-
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"there 1ls obtained

) = j {1——>F 2 4t (i + ) =

— AP TP+ 05+ 1 [ oM
. N . Io

rd

By (76)

T(t) = gz :;" a—9~#3 z %

hence

S(x)=(1—1)* +1J(z,) 4 4"(3"'1): -

Substituting this expression in the sum to be computed,
vields

U1 P H?
PN ) Z(_l),,_,l — 03 2nm

Q /2 "15 0y " J(To)+

(ﬁ'*alJ):kPQ '/ Z( l)n_l 1— 0082””! .

The first of these terms on the basis of (74) gives the
magnitude

ko, '(1—1,)B tli=p !,
and therefore making use of (79) and ncting that

kpy'(14-B)= T,k_Yl Po =20y,
there is obtalned
—I’ll -+- QP:/(—‘; (1—cosm).

' The above formula for B ylelds

R=Qp;./§'a??;(1—cosm). (81)

81
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By making use of equation (80) and COnaidéring the relation

b s e

”}/ZQTB‘E“vb' — the veloelty of the Jet at very distant

points, po(l - 'r‘,)mﬁ % py the density of gas at the
same points, the required formula for R 1is odtained:

= 2lp, voa o f*'n;lw nxf . (82)
T+ ,~¢*§-_v.xgﬁ(—1) -5242— (1 - cos 2nm)
1 - cas n o 4n" - :

.The angle m may be determined by equation (80) in
which all magnitudes except m are given, Thus

Fore ¥ Yo1 _ _Y__ Pg Y P11
Y1 Y-olp, ¥-1p, 1-7

where p, and po 2re the pressure and density at the
eritical point of the dbranching line of flow; whénce

2 2
ER'A T (Y-l)lv
Plvbz + JE?FE Pa -e P2

Finally, the difference between the values of ¥ on the

Jet boundaries (a magnitude will be denoted by Q) is
deternined from the condition

' B
Ao = 2pabvgy = vl = T4) o,

where 2b is the width of the jet at infinity, The mag-
nitudes b, v,, py and p,; should, of course, bBe consid-
ered as gilven,

- The resultant pressure, after m has been found, is,
of course, most simply computed by formula (8l), It may

- -be renarked here, incidentally,.that this formula may be

derived very simply from the momentum theorem. It wiil
then be found that the formula in no way depends either on
the shape of the plate, provided that the latter is sym-—
metrical with respect to the center line ot flow, or on
the relation between the pressure and the density. Thus,

e
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denote Py M the momentum of the gas enclosed in the Je$
bounded on one side by the perpendicular section of the
initial jet at a very large distance aud "O6h the other side
by two similar sections passing through the distant points
of the branched Jjet. The increment in M ia the infini-
tesimal time interval 4t 1is evidently equal tc

2op; voAt(cos m = 1)vy = Qpovolcos m —~ 1)at, since 2b

is the initial width.of'the jet and Qp, 1is the quantity

of gas passing through its cross section per second. The
impulse of the external forces is given by -RAt. 3By the
momentun theorem there iIs obtained

Qp Vo lcos m - 1)at = ~BAt

and this equation, after simplification, leads to formula
{(81), Tor this purpose the less general formula (82) is
of more inportance, 3By using it the second fundanmental
problein of the investigation may be solved aporoximately:
namely, the pressure of a boundless gaseous fluid on an
oabstructing plate.

The approximate summation of the series is started
by enteriang the denominator of foramula (s2)., TFor this,

the anproximate expressions for the funetions x,

already used may be used again in the provlem of the out-
flow of a gas from a vessel (in deriving formula (61):

25g® & 3082 1

2xp = 2 = By - -
: 2(2 - 58) 2 + 19s n + 1

. 8087 2 1 ]
n+ pol(2~58)2 2+ 19s_
where

Denoting for briefness the computed ¥ by L yields
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N
253‘_' )I—I
= |2 DHgm — Q.
2L [2 5s 2(2_53)12 yPee (1 cos2nm)4-
1

« 30s- —1 "-——1
+"+ls9s Z(”-(i-l)()'in- m=yRts —cos2am)4- (83)

o ~
2 1 (—1)"""n
+-30s? [ 57 3 +19_s] Z ) A —T) (1—cos2nm).
T

The serles of the first, second, and third row will be
denoted by K,, N3, N3, respectively, and it will de
noted that after computing ¥, and N,, XN; is obtained
by substituting p =1 in N5;. Then N, can bde con-
sidered as the limiting value of the magnitude N,!':

n=lL
——Z (—l)""l —7 (1—cos2nm); 2 —kli_l}; N/
N=

There is obtained:

n=x n=/

—Z( H™ <2n1 1 "n+1> Z(— ! Mm

n=1 n=1

n=k

. _yyn— COS200m
Z( 1) on4-1"’

w=1

The first of these sums has the value

Is—l 1 .
D" g

tha serond may be given in the form

2 sin(2n—1)m
cost (G cns( il 1)’——smmz G Y sin(@n—1)m

298—1 ?

and the third in the form

F+1 ' ka1 in(2n—1)
cos(2n—Dw _,sin(2n—1)m
— COSM Z( 1)"“ ( ——1—-)—— —_— smmZ(-—l)" ’-—-‘—2-;'-_—_1—- .
- . , ol

By the use of these formulas ‘there is obtained for 4K,?
the expression

1—cos2hm 2n--1 Y

- = _ sm(
AN= () S -{—-smmz () T,
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vhence

. k
. __sinm im w— Sin(2n—1)m
N= 2 k=04 =1 2n—1 ’
m ok
_ Lm( n-—l)m _
Z (=" T f Z (—1)""cos(2n—1)m. (lm
) .
k k
2(—1)""’cos(2n—l),m= 2c(l>sm 2(—1)"—‘(c03'2mn+
1 1 |
+C05(.2”—-2))") oé(;b_”—l [ +(—1).—‘CO§7,UN],
hence
Hld ne L
___sinm n — cos2km
N="7") Gosm Timi=n(=1) 4 f cosm "
0 0
The last term is zero. For
cos2Lm s o I cos(2k——1)mcosm-—sin(?k—l)msinm, I
“cosm M= cosm “m=

9

m .
- sin(2k—1)m__ (*msinm sin(2k—1)m i

2k—1 cosm m ’
o

and from the properties of the Fourier integrals

m
msinm sin (2k—1)m

lim, dm=—0*
k=os ] “cosm m >
o
Hence
n
. cos2lm
lim f — tlm=0.
k=~ 1 “cosm
0
'.l“hus
. m
mm dm
= Y o — (1 —c08 2 == = |, —— =
Z ( ) 411' ( )= 4 ) cosm

0
(84)

~_smml cot (-.-: m)
=7 ogeoig 2—2

*See reference 7, p. 233.

|
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Now turn to ‘bhe computa*&'ion of N,

Bae o e e, e, o

( l)w——l

HACA TM ¥o., 1063

Ny== 2 @ —i) (1—cos2nm) =
[ Z (—-—1)”‘"1 ,-:—:—:;-::_—‘ (1—cos2nm)dt.

The function under the integral may be expressed in . _
finite form through the lower transcendentals. For this
purpose, consider it as the real part of ' ' ’
fa ]

- The integral Ng

G i e

Y ey

1
may then be expressed as

1o
R f Z (=1

¥ _—l i
S 1 —e™™d;

eznm:)

where R iz used to :lndicate the real part of the com—

Plex goantity following it.

1) iy

W1

nt"

But

r+45

C+5

—% +... ] =Vt arctg\t— \—/l_z (arctgVt — Vi) =

H—1 '_‘t_”, " .
42 ot A e

Thug

3

1—¢ -
=1— —Warcfg\/t;

mi

1—

2mi

f .
Vie vc;-e' arctgyte™.
e

“- 2 - —— . — .
AN, =R f t A (€™ '—te™)arctg Vie™ —(1 — arctgyt | dt.

By app-lylng integration by partas,

“—_ .
= f e ™ — ‘)mﬂfa/ te ""dt—-

my

\arctge’"'+

2/

w(2u+1)

4u. —1,

‘there is obtained .

t*‘—‘ B}
1+t
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but '

e e’ 4cosm  Spisinm

177 1 a1 qur—1
p—g t+s5 '

m__ T 4 4 m_m\.
arcige’™= 4-[—-ngcotg< >,

(1--|-tcos?m)t*"‘1 “ tdt
f 1+te’ dt_ 1+2tcos2m+t’ di—isin2m 1+2tcos"m+t

- thus -

mwz——’uzsmm 1= m
S em———— [ ), —_—— - —
J, " 40.-1——1 [ + dgeoty ( i 2)]

1 1
4 (l+tcos2m)t*‘_" -hu,enim ttde
40?1 ] l+2tcosm+t" dit 45 4u— 1+Jtcosm—+—t‘
The intezral in the formula for

Na 1is equal to Jg fer
m= 0, Finally, there ig obtained

1
__=w(cosm—1) | Husinm = m t—de
IN= i1 +,, 4ui— 7 lged! + 4u° —1 14-¢

4y i (14-tcos2m)t* ! dt:
T4’ ) 14-2tcos2m-t T

1N, sinm ® m
il . ) Y
1—cosm xm - —1 + 1 1—cosm lgcotg(4 2)

(85)
Su(l—}—wsm) " t*(1—ndi .
4u —1 (1+t)(1+t'-’+2tcos2m)
Setting in this formula

p. = 1 yields finally the value:
4%, (N3 is the second suxmation entering the formula (83))..
1V, sinm T m
I—cosm ™ +3 1—cosm ]gwtg(z__?—. T

(86)

- +cosm) ' t(l—t)dt :
f ) (- 2tcosam) ’

The definite integral in the a’bovo equa.tion is easily eon—
puted; it 1is equal to

cos2um - .
”deﬂb -+— m ] COS”D—]“") (8 l)
b . "




FACA Til o, 1063

88

Everything required for the computation of 2L by
formula (83) has been developed and the expression for the

force on a plate for any gas Jet can be set up.

Now, con-

sider the case where the jet is infinitely wide ~ that ig,
the problem of the action of.a boundless gas stream on a

plate, For this condition

m= 0,

since the flow after

pessiing round the plate must finally resume its initial

direction,

Therefore compute

1im
m= 0

8'\'

where the exact valuye of L

- coém

is given by the series entar-

ing the denominator of formula (82) and the approximate

value by relation (83)., Using formuias (84), (85), (86),
and (87), there is obtained
e o Fr L oaie T2 3.2 21T 4 ss007
=01 - cosn 2'm =01~ cosm 3 1
g
lim N, _ 2u ™ _ 4p t (1 - t)at
= 01— cosm 4p2 - 1 4(4p® — 1) 4p2 = 1 (1 + t)°
(3
and slnce
-2
3.&3:.-.&) _2wrl e AT e
(1 + ¢)3 1+ ¢
%o Yo
therefore
1. -
1im NE - 44“3 ‘tu ldt - 113 - 1
m=01w-cosm 4p® -1/ 1+t 28+ 1 4(4p® ~ 1)
.o )
Yext, by (83)
2 2
m 8L 4 _ 10¢ - 258 807 1.3163
'm = 0 1 -~ cosm . 2 - 5s 2+ 18s o
? 3 1 pe1
. 3033[ 2.k ]x( ew [t at
(2 ~58)% 2+ 1934: ap® - 1/ 1+ %
S, U . ) = P(s)
2 + 1 4u® ~ 1
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where o
6 4 9s

- e

, § = ==lee 5 = 5 (88?)
4 - 10s 1 -7

Formula (82) takes the form

R = 2lp,vo? F’E'F (88)

. sg Dbeing determined by formula (82!'):

('Y -— l)p '1’»"02

o = )
Z'Ypl
which may be rewritten as
2
g = “o_
° 5c®?

by substituting the Qelocity of gsound ¢ at the distant
points of the flow and the value 1.40 for Y,

Tor s = 0 the expression found for R gives the
formula of Kirchhoff (in reference 2):

R = 2lp.Vp2 ——Nee = 0,44 % 2lp,v,"°
. pPivo n + 4 pivVo

applicable for the pressure of the flow-of an incompress—
ible liquid. This value is approcached by the accurate
fornula (82) for s = O. The greater the velocity, how—

ever, the greater the magnitude *~E@§, and therefore the
™

reaction of the gas flow with increasing velocity increases
somewhat more energetically than in the case of liquid

flow. Now, compute the coefficient —45«5 for the limit-
ing value of s -equal to 0,2 and for values near the
limit, to an accuracy of 0,01,
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. . )  Lammt
| Setting s, = 0.2 ylelds K = 3.9, f T i) =0,144;

| k(!&) T8 — g +1 = 0,459;

P(O,..)==l+- 55 0,857 + . 0,469=2,28.

= .
| | 1:_+P=0’08’
v, " 8, the velocity of sound at the distant points of the

gas Jet; 1z P1s the pressure in that region is equal to

1 atmosphere; then 1n the case of air ¢ = 333 utorl per
second, '

Yor s a=0,1818; w=3,6; v =¢c \/ﬁ == 5‘-?’_9‘-_"‘ 818"/, .+
KH1)==0,1625; k(ii)==0 508;

1,818 . 3.1,818°
P(0,1818)=4-—1,818— 1091—|- 5ig 0808 +
3.1,818?

+garr 0:103=2,42;

2
- Yox 8°===P-z == 0,1176, p==2,b; v, = \/ﬁ c= 255u/“¢..
Hp)==0,2875; k(.)=0,676.

1,176® , 3.1,1761
P{0,1176)med—1,176— o - Some 10,640 4

1,176 _ . T
+ 1 412,— . 0,135=2,93; mﬂ,ﬁ&

For 8= 29—006.) w==2; y = 1;0—-195 5"

Frrine

J()==0,3069, k(u)-‘==0 8085;

) e 0.5 -
1 (‘9,069)__4_ 0,69 T 1 €55 + 33 11 0,008—{-‘ :

3.0,69?

B b 1655, 016-_334 +P_04s.;. |

2
LiJkew 8, ——55—3 =0 0377, y,—-l ;' _._\/-—c 144 6"‘/,u,
L j(w)==0,3578; k(i)=0,8925;
1’(0,0377):-—‘4-—.0 377+o 010:’3,63;

1'+P_0464
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It is thus seen that the coefficient of the formnmula
near the limiting velocities; after which it drops more
slowly. Thus, when the velocity decreases from 333 mne—
ters per second to 318 meters per second, the coefficlent
drops from 0,58 to 0,56 — decreasing by 0.02 - that is,
3.4 percent of its value. The same numerical value for
the drop is obtained .on changing the velocity from 196
meters per second to 145 meters per second, although the
difference of these velocities is 3.4 times greater., It
may be noted, moresover, that at a wvelocity of 145 meters
per second the pressure coefficient is already near the
value which is computed by the formula of Xirchhoff

~-E—Z = 0,44; the differences of these values is equal to
o+

0,024, about 5 percent-of the greater of them. The total

increment of the coefficient 0,58 - 0.44 = 0,14 is about
32 percent of its lower value. . ’

Thus, at not too large velocities the coefficient in
the formula for the pressure on a plate, or what is eguiv-
alent, the resistance of a gaseous medium to the motion in
it of a nlate increases very glowly. Therefore under these
conditions the resistance af the medium follows approxi—
mately the square law. When the velocity of motion of the
plate is near the velocity of sound, however, the resist-—
ance increases in a very marked manner. This conclusion
is entirely confirmed by the available experimental data,
as is shown later,.

Further is noted a relatively simple formula which
for the assumed accuracy of computation gives results
entirely agreeing with those obtained by formula (88):

P(SQ) = 4 - IQSQ + 7502 ' (89)

Compute P(sy,) by (89) and by (88); and for comparison
write the results one below the other. The following table

is obtained
s 0.2 0,1818 0.1176 0,069 0.0377
P(s,) by (88) =2.28 2,42  2.983 3.34 . 3.63
P(s,) by (89) 2,28 2,41 = 2,92 3.34 3.63
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The difference obtained in the value of P by these
formulas in no way affects the value of the. resistance
”cOef¢1c1cnt for the assumed approximation.

The final resistance equation now assumes the form

R = T ' Blplvoz (90)
.7+ 4 - 10s, + 7803
where
o = 1O
. 5¢%

where ¢ 1s the velocity of sound propagation at the dis—
tant poiants of the flow, equal to 333 meters per second
if the nction of the plate takes place in the atmosphere.

If v, 1is not very large (Vo <ﬁ7%3>' the term 7s,%

is negligivle within the limits of accuracy; then

v.=
M+ 4 - 22—
c2

R = kU - 2zp1V08 (90!)

The approximate formula (90) may be obtained from the
exact expression for the pressure of the gas jet on the

rlate in exactly the same manner as the corresponding for-—

mula (69) in the previous section, It is not difficult to

show that if in the denominator of relation (87) x, o 1is
?

replaced approximately by

. s
xp(0) + sox'p(0) + -g— xo"(O)

the computation is carrisd out and m is set equal to O
formula (90) is arrived at. The difference will be only
that the denominator will be found equal to w+h—10so+‘72sf,
- but- thls dis-of small sighificance for assumed accuracy of
computation.
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. Investigation will now be made to find what formula
(90) will yield if it is attempted to apply it in deter-—
CRiHing air resistance to motien, using it beyond the true
limit of its applicability,

The fundamental factor to be conszdered is the coef~
ficient K ‘
X = o

M+ 4 = 108, + 78,°

. &s long as the velocity“of the plate does not exceed the
velocity of sound this coefficient increases at first very
slowly, then much more rapidly with increase in velocity,
as has been shown, the limits of its variations being
given by the extreme values 0.44 and 0,58. This increase
continues even after s, goes beyond the value 0.2 cor-—

responding to the equation v, = c¢; thus for

Vo = %c = about 500 meters per second, o = 0.45, K = 0,773
for Sq = %, Vo = gqr;E = about 629 meters per second; X

attains its maximum value 0,88, twice its value for small
velocities, JFurther on X decreases and for v, = 2.5¢

= about 833 meters per second, s, = 1,25, there is ob—
tained X = 0,56,

The above results qualitatively are in sufficiently
good agreement with test results. This is all the more
interesting in view of the fact that the tests were con-—
ducted under conditions very far removed from those of
the theoretical problem considered since, in fact, X .was
computed from observations on the flight of artillery pro-—
Jectiles. The results were obtained from ballistic tests
by Zabudsky (reference 11, pp. 47-57, table 4, and fiz, 30)
and were mainly used for the purposes of comparison, The
change in the coefficient X for veloé¢ities not exceeding
240 meters per second is in fact almost inappreciable; it
then starts to grow very rapidly, increasing 2.8 times for
a change in the velocity of the projectile from 240 to 420
meters per second thereafter it remains at the same level
until the veloclty exceeds 550 meters per second and then

-drops, giving for 1100 meters per second the same value as
for 340 neters per second, Thus the actual change in X
stands out with great sharpness: the law of the Proportion—
ality of the resistance to the square of the velocity
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clearly applies for. velocities not too large,while for
velocities near thet of sound the coefflcient inereases

“much more rapidly,  This phenomenon might to a -certain.

degrce have been foreseen. Thus in the theoretical prob-— -
lenm the tubes of flow separate from the moving plate in
only two directions, while in the flight of an artillery
Bhell they separate in all meridional planes. 1f in each
of these plane§ the motion took place as in the case under
consideration the resistance coefficient should vary as X°%,
Actually the devistions are not so large. Thig is because
the tubes of flow springing from the projectile spread out
and ftherefors should press less strongly on the body of-
the »rojectile near its sontours, Better results could
not be expected for the reason that applied formula (90)
is outside the limits within which its appiicabil:ty hasg
been proved.

hside from the above reasons there is yet a further
deviating factor: namely, the viscosity of the air ang
its friction at the side of the moving body, Owing to
the viscosity there should be formed behind the plate vor~
tices which lower the pressure in this region; and hence
lead to an inerease in the resistance, This condition
already shows up at the smalier velocities such that, as
shown by the tests of Tibot, the coefficient X is equal
approxinately ta 0,64 instead of ©,44 if the velocity
fluctuates within the limits of 0,5 to 11 meters per second
(refereance 11, p. 14}, For large velocities the effect of
the yiscosity would presumably be not so large.

In concluding this part, a method 1is indicated for
deriving a theoretical formula for the resistance in the
case where the velocity of motion of the plate exceeds
the velocity of sound. Jn this case, for Lhe same reasons
as for the case of a gas flowing out of a vessel, no con-
tinuous steady motion should be expected, As in the
previous case, & certain partition surface should be formed

.@ividiag the region of the flow into two parts in each of

which the motion poéssesses a different character. This
surface, consisting of the two sheets shown in figure 6,
will be considered as enveloping the sound waves. Within
the combressed and heated air layer separated by the sur-
face frpn the atmosphere the motion will ‘be steady and the

variable T will everywhere be less than -2-8—-1:-—-1-;- on the
surfa.ce itself T s ~—sk~r and the relative velocity .of
‘2B + 1
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. the air particles penetrating the layer is equal to the

sound velocity which would be observéd at this place in 2
gas at reost and which is equal to the velocity of the mov—
ing plate., On passing through the boundary of the layer
into the outer atmosphere, a sharp drop in pressure.is
encountercd; here the motion will be unsteady. Under the
same assunption as in the éase of the outflow from a vessel
it is found that the angle at which the flow tubes in their
relative motion (for stationary plate) intersect the bound-
ary of the region of the condensed layer will be constant

~at all points of the partition surface. This additional

condition is sufficient for a mathematical analysis of the
motion within the separating air layer and, therefore,
alse for the solution of the problém of the air pressure
on the plate, It may ve remarked that the very existence
of the partition surface and condensed air layer are by
no means to be considered as hypothetical, since the ex—
istence of these phenomena has been firnly estavlished by
Mach and other careful investigators,

i & e o v e

ke
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PART V

APPROXINATION METHOD OF SOLUTION OF GAS JET PROBLEMS

If the velocities of the gas flow are sufficiently
belpow the limiting velocity ¢ determined by the equation
T, = Eg;I the solution formulas may be presented, approx—

+ .
imately, in a more simple and compact form by introducing
a certain complex variabdle,

In part ‘I the following fundamental equations connect-
ing the derivatives of the velocity potential and stream
function with respect to the independent variables =
and 8 were derived: ‘

% . pr(yry-P 2
¥ 27(1-7) =3

CBp . 1-(2B¥1)T.. _y-B BV
3T ~2T(1—T)(l ™) 08

These are formulas (11) of part I, The follow- -~
ing notation is introduced:

To "B .
r (1T
J ———etee AT = @ (91)
T 27

where T, is the maximum value of 7T corresponding to

the boundary of the jet, The preceding formulas then can
be expressed by

S _ _ ¥
o8 oo
oo o8
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" where

1-(23+1)T

= (1— T)zB+1

In the region of flow the coefficient. K varies;
but if the velocities of motion of the gas are not near
the l1m1t1ng velocity K ig-éonfined within very narrow

'llmits.

First it is shown that X decreases with increasing
T. TFor this purpose the derivative dX/dT is obtained:

- 2BL2

ar (1- 7)25+2

It is clear that the minus sign is retained, what—
ever the positive value T, so that the foregoing state—
ment is correct, NWext the values of KX for the extreme
values of 7T admissible in the problem considered is
computed, Then on the basis of previcusly mentioned data
K will be included between the boundary values thus
obtained,

It is necessary to proceed, for convenience of the
computation, from the variable T +to the variable
s = T/(1-T) to obtain, for K, the value

= . (1-2Bs) (1«&-s)2B

or if B is seﬂ,'as before, equal to 2,5
o
(1~-5s) (1+s)

whence is obtained

‘ 1 1
- 128 30 - :
sg = —2— =L 1> K> 0,987

148 35
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- g, = arer=i, . 1>X > 0,990

168 40

§, = =i = A, 1. >K > 0,9920
188 45

8, = —— = = 1 >X > 0,9957
248 60

s, = —— = R 1 > K>> 0,9976
32 80

s, = —t- = 2, 1> X > 0,9992
508 125

§ = ek = -1 15 K> 0,99995

° 2008 500

The corresponding values of the maximum velocity v,

are determined by the formula v_° = 5¢®s_, where ¢ is

the velocity of sound for the phgsical state of the gas
at the boundaries of the jet, For the preceding values
of 85, if 1t is assumed that near the boundaries of the
jet mean atmospheric conditions prevall the following
values are obtained for v, &

1365 126: 1183 11l; -96; 833 6€,6; 33.3 -meters per

second (the figures are rounded fnr simplicity; ¢ 1is
assumed .equal to 333 m/sec). .

The approximation which is now made consists in taking
K equsl to unity, .Then there is obtained:

‘éé ;téﬁbhﬁn‘
30 28

2 3V

29 oo
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.and, therefore

i e westny T (eay

where o 4ig determined by formula (91),

It is well to consider again the corresponding motion
of an incompressible liquid for the same boundary condi-
tions, together with the probdlem on the gas flow; plane
bounding walls, flow extends infinitely in certain di-
rections, behind the walls at which the flowing mass
separates the pressure is constant and the liquid or the
gas is at rest, The prodlem for the caze of the incom-
pressible liguid is solved by the relations:

d
w, = @ vV, = P(8 + 18), ¢ + 19 = 1g <228

dw,
where ¢ = lg Iﬂ, 8 1s the same angle of the velocity
v

with the X axis as in the gas—flow problem, Over all
the boundaries VY, has some constant value; at the
at the bounding walls 8 = constant;and at the jet sur-
face the velocity v = constant = v,y and therefore
¥ = 0, These are the conditions impesed on w,, a

function of the complex variable ¢ 4+ 16, The method of
obtaining such function is given by Joukowsky in refer—
ence 2,

It is clear that after the function ¥ is found,
which solves the given problem on the incompressible
liquid, the required solution of the same problem on the
gas motion is obtained by setting

p + 1y = Plo + 18)

~thet is, eimply replacing 9 by o; then when the variables

8§ and o pass around the boundaries of their region, V-

will receive the same constant values as V,; where ¢ = 0

of course o¢ = 0, and, therefore, T = T,
After the function ¢+ 1y is found as a function of

g + 18 the coordinates easily can be found as funetiops of

the variables o and 6, the contours of the jet investi-

gated can bde obtained and the constants characteristic of
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the problem determined: namely, the quantity of gas carried
by the Jet and the resultant force on the plates,

“To-determine the dependence-of- -the coordinates bn.
eand 8 T 1is expressed in terms of o, From formula (91)

d 1 1 dr. (1—7)~F
ds 7; T orfr.do o
@ 1—nFf (2{3+1)r o g & _K.
ds /7 = 2t/ y/'r

and since it is assumed that
K=[1—2841)7] : (1-1)*ﬁ+1-1
there 1s obtained
d2 1 _1.1 __CeCe (1-—1)—"9 0, —Cpe™

TR 2 ’ VT 3 ®
Setting T= T, Jylelds p
’l+ 0 1 Cl g_ —_ (1 —, ) (931)

e TR 2 V1,
Turn now to formulas (7') and {8), part I, that gives
the derivatives of the coordinates with. respect to ¢ and V¥

dz _ cosf dy __ sinf
0? 2at d¢-—_v2ta’

dz __ sinb(1—1)F oy  cosb(1—1)F

— ————e e . —_ ——inttr it oo @

V2urt ’ 044 2t

whence, by taking into account (93) and setting x+ iy = 2z,
¢ + 1y = w, ¢ — iV = w! there is obtained:

) } 0z 3 . : .
2./‘2: 5o = Ot P CETHY 22 g = U HO—C et ),
o d
2/2a = C,+% ’”+ Ceh® ‘;w ; (94)

c) ow'’
476 -0+ 18
2V2a 09 == (e + Ce iy >

2/20 7 = Clje"'““’a’w-l—Cz fe“"‘iedw'.
" 'the lntegratlon now may be carried out, since
w=f(o- 1), w'=f,(s—1b),

where f; 1s the function conjugate to f,
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Consider, for example, the approximate solmtion of the
problem of the pressure eXertéd on-a plate by an. infinite.
gas flow, or otherwlse eXxpressed, of the resistance of a
gas medium to the motion of a plate It is assumed here
that the direction of the flow forms a certain angle A
with the normal to the plate, By making use of the Joukow—
sky method the following solution of this problem for the
incompressible liquid is readily obtained:

o, + 1V, = ku®

2
ges A sinn + sin{9~14)

The regions of flow correspond, in this case,'to the
upper half plane of the variable wu, The boundaries & = 0,
which determine the streamlines CA and BD, correspond

-to the segments of the real axis of the u region from

=+ ® t0 U= 1w ginA and from u = - 1 -« ginyr to

u =~ the point u= o gives 84 = 0, 0 = — A, The
part of the plate where 8 = m/2 corresponds to the segment
of the real axis of the u plane bounded by the points

u 0 and w = 1~ sinA; finally, at the boundary OB

8 = -mn/2 and w varies from O to -—1 - sin)\,

it

On the other hand, for u real Y, = 0 and g,
varies from O to + ® as u varies from O to 1®.” Phe
imaginary axis of the u reglon likewise gives v, = 03
¢y 1ncreases from - ® to O, while u runs through the
values from +*1 +to O0; ¢ and @ vary correspondingly
within the 1limits O and + o, -~ )\ and O, It is clear,
from this, that the imaginary axis of the wu half plane
corresponds in the plane of flow to the streamline, X0
branching at the plate into O0AC and OBD

On the basis of the foregoing rule, the solution of
this problem of the gas flow is obtained by setting.

cos X"

o + 1V = ku® = sinn + sin(6=ig) =~ (95) -
u . . ..

~ Phe expressions for the coordinates in terms of o
and 6 now will be sought, Turning for this purpose .to
the last of formulas (94)
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2V2uz=C,e"+ ot e~ oy C, fwe + 2d (sl .
+C,[w'e=® t ®d(c— ib).
for briefness, under the integral signs

Setting,
- 1.+;‘€'__.=t e iH_t
w and w! from (95) -

it
ti—ait"):

and substituting the expressions for

gtv;s '
| ' 2y202=C, e""’ew—}-(,' e~ 10w — 4k C, cos*h j ES)
df
— 4k0 COS k J (QSIH)\t’+2'— tl

Integration yields
o+ _,_,.,e 'y 2 #tcos2A -+ sinA
2V2a2=C, ¢t *w-C, w'+-2kcos™AC, SN T— 7 -+
. oty g W COS2AsinA _ t-4-isinA
-+ 2kcos®AC, Ry Y e —r: 2ikcosA C urcly —
t'}-isink
—+isin 4L

— 2ikeosAC,arcty oY

Or by subetitutiorn of the sum and difference of the
arctangents in the foregolng equation and multiplication of
the entire esquation dy 1i:
2v/2aei — Clie cos*A 4 Gt cos* _
[sinh+sin(0—io) ]2 [sinA+ sin(0 +6)]*

k

- oy COS2A—isinhe 7~ gy COS2h— dsine” %
— Cioos: sinA-fsin(@—ic) Cye0s™ sinA4-sin(6-+-is) +
| | (96)

(€4-e%)e®+2isin) cos\

+cos)\(01+02)arcty{ 2)\+e"'°'+zsm7\(e’+e“’)e°’ ‘ }+
_  (— e=e®  cosn

+ coBA(C, 2)awtg{ et }+ Li.

It i3 not difficult to show that both arctangents enter—
ing the foregoing equation everywhere vary continuously; that
whatever the value of 8, The first

as o approaches o,
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of them approaches =~ % + A and the second % ~ A, and

"therefore, "L (the arﬁitra!y‘ebnstént”bf"infégidtion)
may be determined 'so that for o = o, 1z = 0,

It is noted further that the first of these arctan-
gents nowhere attains the value w/2, since the denom—
inator of its argument nowhere becomes zero; the second
passes through w/2 on the curve defined by the equation

2sind + sina{e%+e™ %) = 0

The expression for the length of the plate 21 is
now set up, FPor this purpose, by formula (96) there is
determined 21 = —iz, + iz, equal to the difference in the
results of the substitution in the expression —iz of the
values o = 0, 8=7n/2 and o =0, 8§ = — w/2, It may be
noted that on the basis of what has been said of the vari-—
atlon of the second arctangent of formula (9¢)

o=0, 8=

V=

o -0, i9
(e —e Je cosi

1
|
= |

arctg ;
i—-ieaei+s1n)\(ea+e”°)eei

o=o0, 6=~%

The same substitution in the first of the arctangents
gives zero as a result, With this in mind, it is found,
after simple ®eduction that: :

21 | c, + ~
—...-v—«ég = 4, ...1.-.......9-3 + ﬂCOSA _c.l 03
k : 2 2

- whence, from formulas (93!)

21 M22T0 o 4, wcosk(luTo)"B

k

Turn now to the geomputation ef .the resultant force R
on the plate, For this purpose use is made of the formula
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: B+
P o= po(.]_..'r.}.

where p, is the pressure at the critical point; 1t is

determined in terms of p, the pressure behind the plate

and prevailing over the entire gas medium at rest by the
formule _ o ‘ -

B+1
Po(1=T,) R

For determining R

1, . 0
+1 +1
R = f p‘)(l---‘v)B 4y +f po(l---'\")‘a dy . "3’91"
° 8=3 '“%2 g=.% '

vhere 1, and i, denote the corresponding lengths of

the parts of the plate OA and 0B from the ecritical point
to the ends, :

"By carrying out the integration by parts there is
obtalned .

R = 1>O(J.---r°)a+1 (11+12)...'2pl1.
To 8 :
+ (B+l)p, f (1-7) arly ~ ¥ )

Do T e
° 8 2 ¢ 2

Substitute, in this expression, the variable o; from
the relation between T and o (formulas (91) and (e3)),

(1—?)8d1’='- 27dg = - p 8. z do
: - {(Cye + c e )

and the limits of integration with respect to o are <=
and O: moreover it may be noted that.the first two terms
'in the fgrmula for R cancel, since 1,+ 1, = 21,
Pol1l-T )P+ = p,, Hence .
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[~
. . . d‘- .
N A I o=
0 G=z ;
Toer, integrating by parts,
C R —u N
iEFp, = / Upox o) Tt
2 2 :

({2 (% .
+, 9/ . \os ) C "0,
0 O== G o o

22y e

2 2.
Substitution gives the result 21/(C,+C.).

With regard to the remaining integral, yi equatioa (94),
if 8 = m/2 and 1t is remembered here that = 0

wla .

—— {0 c _ do
2%z (55)0 = (CeH0e) ( j&‘)e
r ]

For 8 =~ w/2, V¥ = 0 there i1s obtained

2./27(3—2{) =" (Ci™+Ce~) (‘11’) .

O —

Making use of these formulas and integrating again
by parts, in the expression for R, reduces it to the form

CR/22 _ 412 —
2(ﬁ+1>po_01+0+/ (¢ +? )" +

e=———

2

o0

+f(? +o )e“’dﬁ-

0 8=-§ O=m— —
FProm equations (95) there 1ig

keos'y. keos*a

7 I I T ST\ o 3
+ : . - e + -
0= g (sm) + € ) p=— T <s1nl- — ——2—c—>
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and, therefore, by substitution, and introduction in the
= integral of the variadle- § = equdther.minuobtéined:

1
C,R/2z _ 4l/3x
2(5_{_1)?“ ('|+ C 0"(1-}—‘-“1 )\)+4k00\ A

(H— |5 ji— ‘,sm"/\)‘-'+

1

Fia)

2%

] “
-+ dkeos "f (e’
o

These definite integrals have, respecdtively, the values

1 {sinl—cos?l\ in _l_(: A }
9cosTh | 24-2sinA — SIBAT Cosa\d T 2

and

1 sinA-}-cos22. .
3cos™A {_—‘ g—osm. T St o ( it 2)}

and hence, on adding, give

1 = \.
2¢os™A <_ 1+ 2cos7&) !

Substitutiqn of this expression in the formula for R yields

C,RV22  4l/22

5-(:8:{:—]:‘)—?-0 = '6;:—*_‘6; —4k+‘ﬂ]fcos’».

Since
l-{--(,' = 2l.v21 a=4k-|-—1:koosl(1—~¢ Y7, (dk o),
0
= A=)~
1'.0

therefor. '

R= 7—_-— keoshy=, (B-l"l)l’., 98) -

From the formula Just given for 213

I: 2=,

75 P

Iz . —




d NACA TM Fo, 1063 ' ' 107

7 Moreover

= pQ* = = -
o Kpo ' (B+1)P° N1 ®p 4 apy (1-17p)

ks
i

Since from the definition of the constant a (See pt., I,)

Y1

O = e

Y1l

and the density at the jet surface p,, equal to the
density of the distant regions of the flow, 'is connected
with the density at the critical point p, by the formula

Py = po(l—To)

- e e ot
)

Finally by taking into account the eguation « 2aT, = v,

the velocity at the jet surface and at the infinitely dis—
tant moints of the moving gas mass, there is obtained from

(98):

TTCOSA =
R = QIVO pl

B
4(1-Ty5) + mcos)

This formula for B = O passes over, as 1t should,
into the formula of Lord Rayleigh for the flow of an in-
compressible liguid, and for A = O gives the approxXimate
solution of the problem of the pressure of a symmetrical gas

TTCOSA

‘ 4(1~To)a+ﬁ005h _
for the values of s, assumed at the beginning of this '

i wPawtv aind-for: swhich this. app;oxlmete method is applicable
and considering only the case of symmetrlcal flow leads to
the follow1ng result:: For 2 change in s, from 0 to

flow on a plate, Computing the coefficient

I%E ‘and 1“low velocity from 0 to 136 meters per second

the coeffioient ———rmrmx—— fluctuates within the 1imits
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0:440 to 0,460, the increase at the end being greater
than at the beginning. ‘Thus for s = L and v_ = 96

o 248 0
meters per second it still equals only 0,449, Hence for
not very large velocities the law of the proportionality
of the resistance to the square of the velocity is found
‘to be almost exact,

SUPPLEMINTARY REMARKS

1,

Part II: It is of interest to note that the function
¥Yn Wwill always have real roots within the limits of the

variation of T from its critical value E%II to 1, pro-

vided n 1s sufficiently large, Thus for functions with
integral n it is true for n > 1, The number of roots
increases infinltely with =n, These results are obtailned
from Porter's article (reference 12), It is readily con-
cluded that the solution of the problems on the flow of a
ga.s out of a vessel and the resistance of a moving plate
in air, given in parts III and IV, are not applicadble out-—
side of the limits indicated in thls paper because of the
divergence of the series expressing the stream function
and velocity potential,

2.

, Part Vi The expression. ={1 - (ZB+1)T](1-T) 26*
which, in presenting the "approximate method, " was accepted .
as equal to unity actually will be equal to unity in two

,,cases.

"1, If B = 0: This is the case of the motion of an
incompressible liquid, since the formula for the density
'p-: po(l—T) reduces to the equation p = constant,

. . e _ ‘ R |
2, If B = — %: In this case p = kp P = kfp, If

the moving matter is an ideal gas, then in order that this
condition may be satisfie8, it is necessary, in some manner,
to reaove the heat from the flow;ng mass of gas, *ovcreate
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_.such a state of motion of the gas is not actually possible,

1
The problem, however, arrlved at on settlng B = - = is of

i

interest from quite.another viewpoint

The initial equations (7) of part I is considered, 3y

substitution in them for. T 1its value 5& L( ) (ﬁy ]

20 equal to -1 is taken and, for briefness, the derivatives
of ¢ are denoted with respect to X and y by p and gq,
respectively, The equations then become

P . oV q . _ oV
—oE==ETT T O3 TeImzoTTs DT
Jlep®tq® J1+p%+q? ox
pdy~— qdx v
J1+pe+q?

Hence it is clear that if we put ¢ = z, then x,
y, 2z will be the rectangular coordinates of the points
of a minimal surface,

Formulas (91) to (95) of part V, on substituting -u
for T lead to the following relations:

]
1 g - 1+u o -0
-Z = Cle + cze . -/ -'{1“-' = Cle -—-\Gze

. 1+u
C,+0, = —=~—, 0,~C, =~/L‘2
' . u
= Yo : o

where the arbitrary constants are given somewhat different
values from those in the formulas of V, .

_then,

'1,’ N

If o+ie =, o-i@=

z + iy = £(t)

-t

x+iy=0C, J & ° fi(t)at + C . e trg 1(t,)dt,
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where
. o q
w=p®+ a8 = arcte—

For the square of the linear element of the surface
there is found the expression '

as® = (Cye —C.e U)z(dza + dWa) = ~5§:4%— (daz%+ aVv®) .

If the xy plane is horizontal the curves =z = constant
will be the horizontals of the surface; WV = constant are
their orthogonal trajectories,

From the foregoing equations minimal surfaces of various
shapes may be derived, :

l. Setting

nt
f(t) = e
yields
c n+1 o E%L
n ’ n n
x + iy = =2 (z+1iV) ooy e (z—3iV)
n+l n—-1

For n rational various shapes of algebraic surfaces
are thus obtained, An exception is the case n = 1, the
surface .then being transcendental,

Setting f(t) = At gives for real A the catenoid
and for A the helicoid, , .

2, &4 second group of minimal surfaces obtained from
the above formulas is of much greater interest, With the
aid of the latter the minimal surface described within a .
certain given polygonal contour may be sought, The latier
should consist of horizontal and vertical straight segments
(the xy plane as before is taken to be some horizontal
plane), On setting for simplicity u, = ® and hence
G, = - C, = 1/2 1in the above formulas the following is
noted? On each horizontal segment of the boundary contour
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there will evidently be 2z=constant and 6= constant;
1f, hewever, the gegment under tonsideration is vertical
then on it W = constant, p2% + g2 = ® and o = 0, Thus
the regions 2z + iV and o + %8 will be bounded by
straight lines, 3By finding the conformal transformation
of these reglons on the upper half plane of the auxiliary
complex variable s, by the known method, the prodlem

to the effecting of quadratures is reduced As a very
sinple example, the surface described in a pentagonal
contour wf the followlng shape is obtained; one of its
sides 1s the segment of the y axis bisected by the origin.
of coordinptes: from the end of this segment are drawn
two equal sides parallel tg the z axis; from the ends of
the latter two infinite lines parallel to the x axis are
drawn thus completing the contour, This surface is ex—
pressed by the following equations.

sin BYM17k2 PR g R G
8 1-k2sn2 ¥ gp2iz
a - a
S iz iz Y
. h 2x »\/;.—-k?" . 2kisn -E- dn --a-- cn -5
W 2 i_z_

1l ~ k®sn® ~ gn
. a a

They are readily obtained with the aid of the pre~
ceding general formulas if
k /lwsz +\//1-!-k2~32

g+ 190 = lg - pro e s
v 1-k?
S

z + iV = J[ as

~/(1——sa)(1 N 2)

In conclusion 1t may be noted that the given con-—

ditions for the surface may bYe someWwhat varied, '‘Thus,

anong the conditions, the requirement, that one of the
horizontals be a 1ine of curvature of the surface may be

included, The plane of this horizontal will then intersect

the required surface at a constant angle and, theretore it
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2

will be found that, for a certain given value of 1z,

ey qf o= constant and hence. .o.= constant, In exactly

the same way, if it is known that one of the curves,
V' = constant, is a plane curve, then, as is easily shown,
along this curve the angle 8 will be constant,

Trenslation by S. xeiss,
National Advisory Committee
for Aeronautics, '
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